Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos

Autores
Bromberg, Facundo; Schlüter, Federico
Año de publicación
2009
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Nuestra investigación se enmarca en el problema del aprendizaje, a partir de datos, de estructuras de independencia de modelos probabilísticos gráficos. Es de especial interés el aprendizaje automatizado de estos modelos a partir de datos, debido principalmente a la presencia cada vez más ubicua de datos digitales. El campo del aprendizaje de máquinas en general, y en particular los miembros de nuestro laboratorio, se han concentrado en el aprendizaje del grafo que representa la estructura de independencias de estos modelos. Durante su tésis doctoral el Dr Bromberg (Bromberg 2007) se ha concentrado en el diseño de algoritmos de aprendizaje de estructuras que utilizan un enfoque basado en independencias (Spirtes et. al. 2000), en contraste con los algoritmos basados en puntaje (Lam and Bacchus 1994, Heckerman 1995). Estos últimos recurren a técnicas para aprendizaje de modelos mas establecidas en la estadística como ser por ejemplo la maximización de la verosimilitud (probabilidad del los datos dado el modelo). El enfoque basado en independencias, en cambio, utiliza un enfoque mas directo para aprender la estructura de independencias del modelo, realizando tests estadísticos de independencia entre las variables aleatorias del sistema. Durante su estadía en Iowa State University, y durante el pasado año ya en UTN-FRM, el Dr. Bromberg ha contribuido con varios algoritmos para el aprendizaje de estructuras de modelos Markovianos con el objetivo de reducir la cantidad de tests estadísticos necesarios durante su ejecución. Recientemente el laboratorio se ha enfocado en un problema más exigente y más importante, el diseño de algoritmos que ante la misma entrada de datos, produzcan modelos de mejor calidad. Estos algoritmos son aplicables tanto a redes Markovianas como Bayesianas.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Intelligent agents
Machine Learning
Probabilistic Graphical Models
Independence-based Structure Learning
Probabilistic Reasoning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/19703

id SEDICI_48c998ea2202d60d51ffe537419f37c5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/19703
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Aprendizaje de estructuras de independencia de modelos probabilísticos gráficosBromberg, FacundoSchlüter, FedericoCiencias InformáticasIntelligent agentsMachine LearningProbabilistic Graphical ModelsIndependence-based Structure LearningProbabilistic ReasoningNuestra investigación se enmarca en el problema del aprendizaje, a partir de datos, de estructuras de independencia de modelos probabilísticos gráficos. Es de especial interés el aprendizaje automatizado de estos modelos a partir de datos, debido principalmente a la presencia cada vez más ubicua de datos digitales. El campo del aprendizaje de máquinas en general, y en particular los miembros de nuestro laboratorio, se han concentrado en el aprendizaje del grafo que representa la estructura de independencias de estos modelos. Durante su tésis doctoral el Dr Bromberg (Bromberg 2007) se ha concentrado en el diseño de algoritmos de aprendizaje de estructuras que utilizan un enfoque basado en independencias (Spirtes et. al. 2000), en contraste con los algoritmos basados en puntaje (Lam and Bacchus 1994, Heckerman 1995). Estos últimos recurren a técnicas para aprendizaje de modelos mas establecidas en la estadística como ser por ejemplo la maximización de la verosimilitud (probabilidad del los datos dado el modelo). El enfoque basado en independencias, en cambio, utiliza un enfoque mas directo para aprender la estructura de independencias del modelo, realizando tests estadísticos de independencia entre las variables aleatorias del sistema. Durante su estadía en Iowa State University, y durante el pasado año ya en UTN-FRM, el Dr. Bromberg ha contribuido con varios algoritmos para el aprendizaje de estructuras de modelos Markovianos con el objetivo de reducir la cantidad de tests estadísticos necesarios durante su ejecución. Recientemente el laboratorio se ha enfocado en un problema más exigente y más importante, el diseño de algoritmos que ante la misma entrada de datos, produzcan modelos de mejor calidad. Estos algoritmos son aplicables tanto a redes Markovianas como Bayesianas.Eje: Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2009-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf157-162http://sedici.unlp.edu.ar/handle/10915/19703spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:00Zoai:sedici.unlp.edu.ar:10915/19703Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:00.556SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
title Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
spellingShingle Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
Bromberg, Facundo
Ciencias Informáticas
Intelligent agents
Machine Learning
Probabilistic Graphical Models
Independence-based Structure Learning
Probabilistic Reasoning
title_short Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
title_full Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
title_fullStr Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
title_full_unstemmed Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
title_sort Aprendizaje de estructuras de independencia de modelos probabilísticos gráficos
dc.creator.none.fl_str_mv Bromberg, Facundo
Schlüter, Federico
author Bromberg, Facundo
author_facet Bromberg, Facundo
Schlüter, Federico
author_role author
author2 Schlüter, Federico
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Intelligent agents
Machine Learning
Probabilistic Graphical Models
Independence-based Structure Learning
Probabilistic Reasoning
topic Ciencias Informáticas
Intelligent agents
Machine Learning
Probabilistic Graphical Models
Independence-based Structure Learning
Probabilistic Reasoning
dc.description.none.fl_txt_mv Nuestra investigación se enmarca en el problema del aprendizaje, a partir de datos, de estructuras de independencia de modelos probabilísticos gráficos. Es de especial interés el aprendizaje automatizado de estos modelos a partir de datos, debido principalmente a la presencia cada vez más ubicua de datos digitales. El campo del aprendizaje de máquinas en general, y en particular los miembros de nuestro laboratorio, se han concentrado en el aprendizaje del grafo que representa la estructura de independencias de estos modelos. Durante su tésis doctoral el Dr Bromberg (Bromberg 2007) se ha concentrado en el diseño de algoritmos de aprendizaje de estructuras que utilizan un enfoque basado en independencias (Spirtes et. al. 2000), en contraste con los algoritmos basados en puntaje (Lam and Bacchus 1994, Heckerman 1995). Estos últimos recurren a técnicas para aprendizaje de modelos mas establecidas en la estadística como ser por ejemplo la maximización de la verosimilitud (probabilidad del los datos dado el modelo). El enfoque basado en independencias, en cambio, utiliza un enfoque mas directo para aprender la estructura de independencias del modelo, realizando tests estadísticos de independencia entre las variables aleatorias del sistema. Durante su estadía en Iowa State University, y durante el pasado año ya en UTN-FRM, el Dr. Bromberg ha contribuido con varios algoritmos para el aprendizaje de estructuras de modelos Markovianos con el objetivo de reducir la cantidad de tests estadísticos necesarios durante su ejecución. Recientemente el laboratorio se ha enfocado en un problema más exigente y más importante, el diseño de algoritmos que ante la misma entrada de datos, produzcan modelos de mejor calidad. Estos algoritmos son aplicables tanto a redes Markovianas como Bayesianas.
Eje: Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Nuestra investigación se enmarca en el problema del aprendizaje, a partir de datos, de estructuras de independencia de modelos probabilísticos gráficos. Es de especial interés el aprendizaje automatizado de estos modelos a partir de datos, debido principalmente a la presencia cada vez más ubicua de datos digitales. El campo del aprendizaje de máquinas en general, y en particular los miembros de nuestro laboratorio, se han concentrado en el aprendizaje del grafo que representa la estructura de independencias de estos modelos. Durante su tésis doctoral el Dr Bromberg (Bromberg 2007) se ha concentrado en el diseño de algoritmos de aprendizaje de estructuras que utilizan un enfoque basado en independencias (Spirtes et. al. 2000), en contraste con los algoritmos basados en puntaje (Lam and Bacchus 1994, Heckerman 1995). Estos últimos recurren a técnicas para aprendizaje de modelos mas establecidas en la estadística como ser por ejemplo la maximización de la verosimilitud (probabilidad del los datos dado el modelo). El enfoque basado en independencias, en cambio, utiliza un enfoque mas directo para aprender la estructura de independencias del modelo, realizando tests estadísticos de independencia entre las variables aleatorias del sistema. Durante su estadía en Iowa State University, y durante el pasado año ya en UTN-FRM, el Dr. Bromberg ha contribuido con varios algoritmos para el aprendizaje de estructuras de modelos Markovianos con el objetivo de reducir la cantidad de tests estadísticos necesarios durante su ejecución. Recientemente el laboratorio se ha enfocado en un problema más exigente y más importante, el diseño de algoritmos que ante la misma entrada de datos, produzcan modelos de mejor calidad. Estos algoritmos son aplicables tanto a redes Markovianas como Bayesianas.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/19703
url http://sedici.unlp.edu.ar/handle/10915/19703
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
157-162
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615796754481152
score 13.070432