Identificación de genotipos de batata mediante técnicas de aprendizaje profundo
- Autores
- Berger, Javier; Vilanova Pérez, Antonella; Flamarique, Sofía Solange; Di Feo, Liliana del Valle
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El cultivo de Ipomoea batatas (L.) Lam conocida regionalmente como batata se desarrolla en más de 100 países. Existe una gran variabilidad genética de la especie que se refleja en la variación del sabor, tamaño, forma, peso y textura de la batata, como así también en las formas de las hojas de cada genotipo. La identificación de los genotipos de batata permite reconocer aquellas variedades que poseen características específicas, esta tarea requiere de personas con entrenamiento visual suficiente. Por esta razón, en este trabajo se desarrolla un modelo basado en técnicas de aprendizaje profundo como herramienta de apoyo para la identificación de cuatro genotipos de batata: Arapey INIA, Beauregard, Boni INTA y Morada INTA mediante el uso de fotografías pertenecientes a un conjunto de 836 imágenes distribuidas bajo licencia Creative Commons con Atribución por el Instituto de Patología Vegetal (IPAVE) dependiente del Centro de Investigaciones Agropecuarias (CIAP) del Instituto Nacional de Tecnología Agropecuaria (INTA). Se utilizó la técnica de aprendizaje por transferencia con el modelo MobileNet v2, ejecutado en el entorno de desarrollo Google Colaboratory mediante la librería de código abierto Tensorflow. Durante el entrena-miento se obtuvo 93,33 % de clasificaciones correctas y con un conjunto de eva-luación se obtuvo 92,5 % de aciertos.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Aprendizaje automático
Transferencia de aprendizaje
Procesamiento de imágenes
Ipomoea batatas - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/115531
Ver los metadatos del registro completo
id |
SEDICI_baf3ae1f63cf54a4177acf13f7914c3d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/115531 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundoBerger, JavierVilanova Pérez, AntonellaFlamarique, Sofía SolangeDi Feo, Liliana del ValleCiencias InformáticasAprendizaje automáticoTransferencia de aprendizajeProcesamiento de imágenesIpomoea batatasEl cultivo de Ipomoea batatas (L.) Lam conocida regionalmente como batata se desarrolla en más de 100 países. Existe una gran variabilidad genética de la especie que se refleja en la variación del sabor, tamaño, forma, peso y textura de la batata, como así también en las formas de las hojas de cada genotipo. La identificación de los genotipos de batata permite reconocer aquellas variedades que poseen características específicas, esta tarea requiere de personas con entrenamiento visual suficiente. Por esta razón, en este trabajo se desarrolla un modelo basado en técnicas de aprendizaje profundo como herramienta de apoyo para la identificación de cuatro genotipos de batata: Arapey INIA, Beauregard, Boni INTA y Morada INTA mediante el uso de fotografías pertenecientes a un conjunto de 836 imágenes distribuidas bajo licencia Creative Commons con Atribución por el Instituto de Patología Vegetal (IPAVE) dependiente del Centro de Investigaciones Agropecuarias (CIAP) del Instituto Nacional de Tecnología Agropecuaria (INTA). Se utilizó la técnica de aprendizaje por transferencia con el modelo MobileNet v2, ejecutado en el entorno de desarrollo Google Colaboratory mediante la librería de código abierto Tensorflow. Durante el entrena-miento se obtuvo 93,33 % de clasificaciones correctas y con un conjunto de eva-luación se obtuvo 92,5 % de aciertos.Sociedad Argentina de Informática e Investigación Operativa2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf242-254http://sedici.unlp.edu.ar/handle/10915/115531spainfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/cai/CAI_30.pdfinfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:54Zoai:sedici.unlp.edu.ar:10915/115531Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:54.848SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
title |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
spellingShingle |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo Berger, Javier Ciencias Informáticas Aprendizaje automático Transferencia de aprendizaje Procesamiento de imágenes Ipomoea batatas |
title_short |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
title_full |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
title_fullStr |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
title_full_unstemmed |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
title_sort |
Identificación de genotipos de batata mediante técnicas de aprendizaje profundo |
dc.creator.none.fl_str_mv |
Berger, Javier Vilanova Pérez, Antonella Flamarique, Sofía Solange Di Feo, Liliana del Valle |
author |
Berger, Javier |
author_facet |
Berger, Javier Vilanova Pérez, Antonella Flamarique, Sofía Solange Di Feo, Liliana del Valle |
author_role |
author |
author2 |
Vilanova Pérez, Antonella Flamarique, Sofía Solange Di Feo, Liliana del Valle |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Aprendizaje automático Transferencia de aprendizaje Procesamiento de imágenes Ipomoea batatas |
topic |
Ciencias Informáticas Aprendizaje automático Transferencia de aprendizaje Procesamiento de imágenes Ipomoea batatas |
dc.description.none.fl_txt_mv |
El cultivo de Ipomoea batatas (L.) Lam conocida regionalmente como batata se desarrolla en más de 100 países. Existe una gran variabilidad genética de la especie que se refleja en la variación del sabor, tamaño, forma, peso y textura de la batata, como así también en las formas de las hojas de cada genotipo. La identificación de los genotipos de batata permite reconocer aquellas variedades que poseen características específicas, esta tarea requiere de personas con entrenamiento visual suficiente. Por esta razón, en este trabajo se desarrolla un modelo basado en técnicas de aprendizaje profundo como herramienta de apoyo para la identificación de cuatro genotipos de batata: Arapey INIA, Beauregard, Boni INTA y Morada INTA mediante el uso de fotografías pertenecientes a un conjunto de 836 imágenes distribuidas bajo licencia Creative Commons con Atribución por el Instituto de Patología Vegetal (IPAVE) dependiente del Centro de Investigaciones Agropecuarias (CIAP) del Instituto Nacional de Tecnología Agropecuaria (INTA). Se utilizó la técnica de aprendizaje por transferencia con el modelo MobileNet v2, ejecutado en el entorno de desarrollo Google Colaboratory mediante la librería de código abierto Tensorflow. Durante el entrena-miento se obtuvo 93,33 % de clasificaciones correctas y con un conjunto de eva-luación se obtuvo 92,5 % de aciertos. Sociedad Argentina de Informática e Investigación Operativa |
description |
El cultivo de Ipomoea batatas (L.) Lam conocida regionalmente como batata se desarrolla en más de 100 países. Existe una gran variabilidad genética de la especie que se refleja en la variación del sabor, tamaño, forma, peso y textura de la batata, como así también en las formas de las hojas de cada genotipo. La identificación de los genotipos de batata permite reconocer aquellas variedades que poseen características específicas, esta tarea requiere de personas con entrenamiento visual suficiente. Por esta razón, en este trabajo se desarrolla un modelo basado en técnicas de aprendizaje profundo como herramienta de apoyo para la identificación de cuatro genotipos de batata: Arapey INIA, Beauregard, Boni INTA y Morada INTA mediante el uso de fotografías pertenecientes a un conjunto de 836 imágenes distribuidas bajo licencia Creative Commons con Atribución por el Instituto de Patología Vegetal (IPAVE) dependiente del Centro de Investigaciones Agropecuarias (CIAP) del Instituto Nacional de Tecnología Agropecuaria (INTA). Se utilizó la técnica de aprendizaje por transferencia con el modelo MobileNet v2, ejecutado en el entorno de desarrollo Google Colaboratory mediante la librería de código abierto Tensorflow. Durante el entrena-miento se obtuvo 93,33 % de clasificaciones correctas y con un conjunto de eva-luación se obtuvo 92,5 % de aciertos. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/115531 |
url |
http://sedici.unlp.edu.ar/handle/10915/115531 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/cai/CAI_30.pdf info:eu-repo/semantics/altIdentifier/issn/2525-0949 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 242-254 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616147187531776 |
score |
13.070432 |