Calidad universitaria mediante técnicas del data mining

Autores
Herrera, Myriam; Lund, María Inés; Ruiz, Susana; Romagnano, María Gema
Año de publicación
2018
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En la actualidad, la mayoría de las instituciones, empresas u organizaciones miden la calidad de sus productos y/o servicios. De igual forma las instituciones educativas se ven obligadas a medir la calidad educativa. Para ello se necesita conocer los factores que influyen en la calidad de la institución, entre ellos, los relacionados al rendimiento académico de sus alumnos y al grado de satisfacción de sus egresados. Para lograr esto se utilizarán valiosas técnicas estadísticas que permitirán clasificar sujetos u objetos a partir de características similares. Estas técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en los datos. Por un lado, el Análisis Discriminante, también referido como reconocimiento de patrones supervisado o asistido o aprendizaje con guía. Por otro lado, el Análisis de Conglomerados, referido como reconocimiento de patrón no supervisado o conocimiento sin guía. Como es común recopilar grandes conjuntos de datos, de distinta naturaleza, en voluminosas bases de datos, es que se utilizarán los análisis de Datos Simbólicos empleando la Lógica Difusa, que son también herramientas para Data Mining. En este proyecto se aplicarán las técnicas mencionadas para analizar los factores influyentes en la calidad universitaria como así también se detectarán tipologías básicas de grupos, obtenidos de los alumnos universitarios y egresados de la Facultad de Ciencias Exactas, Físicas y Naturales de la UNSJ.
Eje: Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
calidad universitaria
Data mining
Clasificación
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/67235

id SEDICI_b8035721e72148c6c2e664d79bee1177
oai_identifier_str oai:sedici.unlp.edu.ar:10915/67235
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Calidad universitaria mediante técnicas del data miningHerrera, MyriamLund, María InésRuiz, SusanaRomagnano, María GemaCiencias Informáticascalidad universitariaData miningClasificaciónEn la actualidad, la mayoría de las instituciones, empresas u organizaciones miden la calidad de sus productos y/o servicios. De igual forma las instituciones educativas se ven obligadas a medir la calidad educativa. Para ello se necesita conocer los factores que influyen en la calidad de la institución, entre ellos, los relacionados al rendimiento académico de sus alumnos y al grado de satisfacción de sus egresados. Para lograr esto se utilizarán valiosas técnicas estadísticas que permitirán clasificar sujetos u objetos a partir de características similares. Estas técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en los datos. Por un lado, el Análisis Discriminante, también referido como reconocimiento de patrones supervisado o asistido o aprendizaje con guía. Por otro lado, el Análisis de Conglomerados, referido como reconocimiento de patrón no supervisado o conocimiento sin guía. Como es común recopilar grandes conjuntos de datos, de distinta naturaleza, en voluminosas bases de datos, es que se utilizarán los análisis de Datos Simbólicos empleando la Lógica Difusa, que son también herramientas para Data Mining. En este proyecto se aplicarán las técnicas mencionadas para analizar los factores influyentes en la calidad universitaria como así también se detectarán tipologías básicas de grupos, obtenidos de los alumnos universitarios y egresados de la Facultad de Ciencias Exactas, Físicas y Naturales de la UNSJ.Eje: Bases de Datos y Minería de Datos.Red de Universidades con Carreras en Informática2018-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf205-208http://sedici.unlp.edu.ar/handle/10915/67235spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4info:eu-repo/semantics/reference/hdl/10915/67063info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:02:13Zoai:sedici.unlp.edu.ar:10915/67235Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:02:13.89SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Calidad universitaria mediante técnicas del data mining
title Calidad universitaria mediante técnicas del data mining
spellingShingle Calidad universitaria mediante técnicas del data mining
Herrera, Myriam
Ciencias Informáticas
calidad universitaria
Data mining
Clasificación
title_short Calidad universitaria mediante técnicas del data mining
title_full Calidad universitaria mediante técnicas del data mining
title_fullStr Calidad universitaria mediante técnicas del data mining
title_full_unstemmed Calidad universitaria mediante técnicas del data mining
title_sort Calidad universitaria mediante técnicas del data mining
dc.creator.none.fl_str_mv Herrera, Myriam
Lund, María Inés
Ruiz, Susana
Romagnano, María Gema
author Herrera, Myriam
author_facet Herrera, Myriam
Lund, María Inés
Ruiz, Susana
Romagnano, María Gema
author_role author
author2 Lund, María Inés
Ruiz, Susana
Romagnano, María Gema
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
calidad universitaria
Data mining
Clasificación
topic Ciencias Informáticas
calidad universitaria
Data mining
Clasificación
dc.description.none.fl_txt_mv En la actualidad, la mayoría de las instituciones, empresas u organizaciones miden la calidad de sus productos y/o servicios. De igual forma las instituciones educativas se ven obligadas a medir la calidad educativa. Para ello se necesita conocer los factores que influyen en la calidad de la institución, entre ellos, los relacionados al rendimiento académico de sus alumnos y al grado de satisfacción de sus egresados. Para lograr esto se utilizarán valiosas técnicas estadísticas que permitirán clasificar sujetos u objetos a partir de características similares. Estas técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en los datos. Por un lado, el Análisis Discriminante, también referido como reconocimiento de patrones supervisado o asistido o aprendizaje con guía. Por otro lado, el Análisis de Conglomerados, referido como reconocimiento de patrón no supervisado o conocimiento sin guía. Como es común recopilar grandes conjuntos de datos, de distinta naturaleza, en voluminosas bases de datos, es que se utilizarán los análisis de Datos Simbólicos empleando la Lógica Difusa, que son también herramientas para Data Mining. En este proyecto se aplicarán las técnicas mencionadas para analizar los factores influyentes en la calidad universitaria como así también se detectarán tipologías básicas de grupos, obtenidos de los alumnos universitarios y egresados de la Facultad de Ciencias Exactas, Físicas y Naturales de la UNSJ.
Eje: Bases de Datos y Minería de Datos.
Red de Universidades con Carreras en Informática
description En la actualidad, la mayoría de las instituciones, empresas u organizaciones miden la calidad de sus productos y/o servicios. De igual forma las instituciones educativas se ven obligadas a medir la calidad educativa. Para ello se necesita conocer los factores que influyen en la calidad de la institución, entre ellos, los relacionados al rendimiento académico de sus alumnos y al grado de satisfacción de sus egresados. Para lograr esto se utilizarán valiosas técnicas estadísticas que permitirán clasificar sujetos u objetos a partir de características similares. Estas técnicas se pueden diferenciar por la manera de extraer conocimiento útil escondido en los datos. Por un lado, el Análisis Discriminante, también referido como reconocimiento de patrones supervisado o asistido o aprendizaje con guía. Por otro lado, el Análisis de Conglomerados, referido como reconocimiento de patrón no supervisado o conocimiento sin guía. Como es común recopilar grandes conjuntos de datos, de distinta naturaleza, en voluminosas bases de datos, es que se utilizarán los análisis de Datos Simbólicos empleando la Lógica Difusa, que son también herramientas para Data Mining. En este proyecto se aplicarán las técnicas mencionadas para analizar los factores influyentes en la calidad universitaria como así también se detectarán tipologías básicas de grupos, obtenidos de los alumnos universitarios y egresados de la Facultad de Ciencias Exactas, Físicas y Naturales de la UNSJ.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/67235
url http://sedici.unlp.edu.ar/handle/10915/67235
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-3619-27-4
info:eu-repo/semantics/reference/hdl/10915/67063
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
205-208
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064073710501888
score 13.22299