Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas

Autores
Villagra, Andrea; Pandolfi, Daniel
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.
The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated.
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
c-means
genetic algorithms
particle swarm optimization
Biology and genetics
Medicine and science
Algorithms
optimización mediante cúmulos de partículas (PSO)
algoritmos genéticos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23371

id SEDICI_a603bc71514126bd6cacedc5d00b9101
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23371
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticasVillagra, AndreaPandolfi, DanielCiencias InformáticasInformáticac-meansgenetic algorithmsparticle swarm optimizationBiology and geneticsMedicine and scienceAlgorithmsoptimización mediante cúmulos de partículas (PSO)algoritmos genéticosLos algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1763-1773http://sedici.unlp.edu.ar/handle/10915/23371spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:26Zoai:sedici.unlp.edu.ar:10915/23371Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:26.615SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
title Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
spellingShingle Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
Villagra, Andrea
Ciencias Informáticas
Informática
c-means
genetic algorithms
particle swarm optimization
Biology and genetics
Medicine and science
Algorithms
optimización mediante cúmulos de partículas (PSO)
algoritmos genéticos
title_short Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
title_full Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
title_fullStr Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
title_full_unstemmed Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
title_sort Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
dc.creator.none.fl_str_mv Villagra, Andrea
Pandolfi, Daniel
author Villagra, Andrea
author_facet Villagra, Andrea
Pandolfi, Daniel
author_role author
author2 Pandolfi, Daniel
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
c-means
genetic algorithms
particle swarm optimization
Biology and genetics
Medicine and science
Algorithms
optimización mediante cúmulos de partículas (PSO)
algoritmos genéticos
topic Ciencias Informáticas
Informática
c-means
genetic algorithms
particle swarm optimization
Biology and genetics
Medicine and science
Algorithms
optimización mediante cúmulos de partículas (PSO)
algoritmos genéticos
dc.description.none.fl_txt_mv Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.
The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated.
Red de Universidades con Carreras en Informática (RedUNCI)
description Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23371
url http://sedici.unlp.edu.ar/handle/10915/23371
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1763-1773
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615813233901568
score 13.070432