Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas
- Autores
- Villagra, Andrea; Pandolfi, Daniel
- Año de publicación
- 2007
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.
The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
c-means
genetic algorithms
particle swarm optimization
Biology and genetics
Medicine and science
Algorithms
optimización mediante cúmulos de partículas (PSO)
algoritmos genéticos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23371
Ver los metadatos del registro completo
id |
SEDICI_a603bc71514126bd6cacedc5d00b9101 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23371 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticasVillagra, AndreaPandolfi, DanielCiencias InformáticasInformáticac-meansgenetic algorithmsparticle swarm optimizationBiology and geneticsMedicine and scienceAlgorithmsoptimización mediante cúmulos de partículas (PSO)algoritmos genéticosLos algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente.The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1763-1773http://sedici.unlp.edu.ar/handle/10915/23371spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:26Zoai:sedici.unlp.edu.ar:10915/23371Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:26.615SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
title |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
spellingShingle |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas Villagra, Andrea Ciencias Informáticas Informática c-means genetic algorithms particle swarm optimization Biology and genetics Medicine and science Algorithms optimización mediante cúmulos de partículas (PSO) algoritmos genéticos |
title_short |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
title_full |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
title_fullStr |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
title_full_unstemmed |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
title_sort |
Selección de centroides para algoritmos de clustering a través de técnicas metaheurísticas |
dc.creator.none.fl_str_mv |
Villagra, Andrea Pandolfi, Daniel |
author |
Villagra, Andrea |
author_facet |
Villagra, Andrea Pandolfi, Daniel |
author_role |
author |
author2 |
Pandolfi, Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática c-means genetic algorithms particle swarm optimization Biology and genetics Medicine and science Algorithms optimización mediante cúmulos de partículas (PSO) algoritmos genéticos |
topic |
Ciencias Informáticas Informática c-means genetic algorithms particle swarm optimization Biology and genetics Medicine and science Algorithms optimización mediante cúmulos de partículas (PSO) algoritmos genéticos |
dc.description.none.fl_txt_mv |
Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente. The clustering algorithms like c-means are sensitive to the initialization values of the cluster centers and can be trapped by local extrema. In these terms, the use of estimated approaches to obtain the most appropriate cluster centers can be of great utility as a complementary tool during certain phases of the process of data mining; particulary, in some specific task of data mining, e.g., clustering. In this way, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are two population metaheuristic approaches that could be considered as optimization. In this work the use of these two metaheuristic approaches is analyzed to optimize the initialization of the cluster centers values in the functions applied in the c-means algorithms. The respective results are compared using several datasets artificially generated. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Los algoritmos de clustering de tipo c-means son sensibles a los valores de inicialización de los centroides y pueden quedar atrapados en extremos locales. Planteado en estos términos, el uso de enfoques aproximados para obtener los centroides más adecuados puede ser de gran utilidad como herramienta complementaria durante ciertas fases del proceso de minería de datos, y en particular dentro de las tareas típicas de minería de datos, entre ellas la de clustering o agrupamiento. En esta dirección, los Algoritmos Genéticos (AGs) y la Optimización Basada en Cúmulo de Partículas (PSO)1 son dos técnicas metaheurísticas poblacionales que podrían utilizarse en este ámbito, más aún cuando los problemas pueden ser planteados como de optimización. En este trabajo se analiza el uso estas dos técnicas metaheurísticas para optimizar la inicialización de los valores de centroides en las funciones aplicadas en los algoritmos de clustering tipo c-means. Los respectivos resultados son comparados usando varios conjuntos de datos generados artificialmente. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23371 |
url |
http://sedici.unlp.edu.ar/handle/10915/23371 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1763-1773 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615813233901568 |
score |
13.070432 |