A modified binary-PSO for continuous optimization
- Autores
- Orellana, Alina; Minetti, Gabriela F.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.
Presentado en el X Workshop Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Particle Swarm Optimization (PSO)
Heuristic methods
swarm intelligence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20886
Ver los metadatos del registro completo
id |
SEDICI_177d47c41067351792f8cbf3d4f02c41 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20886 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A modified binary-PSO for continuous optimizationOrellana, AlinaMinetti, Gabriela F.Ciencias InformáticasParticle Swarm Optimization (PSO)Heuristic methodsswarm intelligenceMetaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2009-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf80-89http://sedici.unlp.edu.ar/handle/10915/20886enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:14Zoai:sedici.unlp.edu.ar:10915/20886Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:15.167SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A modified binary-PSO for continuous optimization |
title |
A modified binary-PSO for continuous optimization |
spellingShingle |
A modified binary-PSO for continuous optimization Orellana, Alina Ciencias Informáticas Particle Swarm Optimization (PSO) Heuristic methods swarm intelligence |
title_short |
A modified binary-PSO for continuous optimization |
title_full |
A modified binary-PSO for continuous optimization |
title_fullStr |
A modified binary-PSO for continuous optimization |
title_full_unstemmed |
A modified binary-PSO for continuous optimization |
title_sort |
A modified binary-PSO for continuous optimization |
dc.creator.none.fl_str_mv |
Orellana, Alina Minetti, Gabriela F. |
author |
Orellana, Alina |
author_facet |
Orellana, Alina Minetti, Gabriela F. |
author_role |
author |
author2 |
Minetti, Gabriela F. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Particle Swarm Optimization (PSO) Heuristic methods swarm intelligence |
topic |
Ciencias Informáticas Particle Swarm Optimization (PSO) Heuristic methods swarm intelligence |
dc.description.none.fl_txt_mv |
Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space. Presentado en el X Workshop Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20886 |
url |
http://sedici.unlp.edu.ar/handle/10915/20886 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 80-89 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260109723435008 |
score |
13.13397 |