A modified binary-PSO for continuous optimization

Autores
Orellana, Alina; Minetti, Gabriela F.
Año de publicación
2009
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.
Presentado en el X Workshop Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Particle Swarm Optimization (PSO)
Heuristic methods
swarm intelligence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/20886

id SEDICI_177d47c41067351792f8cbf3d4f02c41
oai_identifier_str oai:sedici.unlp.edu.ar:10915/20886
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A modified binary-PSO for continuous optimizationOrellana, AlinaMinetti, Gabriela F.Ciencias InformáticasParticle Swarm Optimization (PSO)Heuristic methodsswarm intelligenceMetaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2009-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf80-89http://sedici.unlp.edu.ar/handle/10915/20886enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:14Zoai:sedici.unlp.edu.ar:10915/20886Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:15.167SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A modified binary-PSO for continuous optimization
title A modified binary-PSO for continuous optimization
spellingShingle A modified binary-PSO for continuous optimization
Orellana, Alina
Ciencias Informáticas
Particle Swarm Optimization (PSO)
Heuristic methods
swarm intelligence
title_short A modified binary-PSO for continuous optimization
title_full A modified binary-PSO for continuous optimization
title_fullStr A modified binary-PSO for continuous optimization
title_full_unstemmed A modified binary-PSO for continuous optimization
title_sort A modified binary-PSO for continuous optimization
dc.creator.none.fl_str_mv Orellana, Alina
Minetti, Gabriela F.
author Orellana, Alina
author_facet Orellana, Alina
Minetti, Gabriela F.
author_role author
author2 Minetti, Gabriela F.
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Particle Swarm Optimization (PSO)
Heuristic methods
swarm intelligence
topic Ciencias Informáticas
Particle Swarm Optimization (PSO)
Heuristic methods
swarm intelligence
dc.description.none.fl_txt_mv Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.
Presentado en el X Workshop Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Metaheuristics based on swarm intelligence simulate the behavior of a biological social system like as a flock of birds or a swarm of bees, and they have achieved important advances for solving optimization problems. In this paper, we propose a variant for a particular kind of those metaheurisitcs: Particle Swarm Optimization (PSO). This modification arises after discovering a low rate of convergence produced by a high level of dispersal at the swarm. Finally, we analyzed and compared the results obtained by an original PSO algorithm and our proposal. From those, we can see the improvement obtained by our variant since it allows to explore more the search space.
publishDate 2009
dc.date.none.fl_str_mv 2009-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/20886
url http://sedici.unlp.edu.ar/handle/10915/20886
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
80-89
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260109723435008
score 13.13397