Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio

Autores
Jimbo Santana, Patricia Rosalía
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Lanzarini, Laura Cristina
Bariviera, Aurelio F.
Errecalde, Marcelo Luis
Leguizamón, Mario Guillermo
Olivas Varela, José Ángel
Descripción
El aporte central de esta tesis es la definición de un nuevo método capaz de generar un conjunto de reglas de clasificación difusas de fácil interpretación, baja cardinalidad y una buena precisión. Estas características ayudan a identificar y comprender las relaciones presentes en los datos facilitando de esta forma la toma de decisiones. El nuevo método propuesto se denomina FRvarPSO (Fuzzy Rules variable Particle Swarm Oprmization) y combina una red neuronal competitiva con una técnica de optimización basada en cúmulo de partículas de población variable para la obtención de reglas de clasificación difusas, capaces de operar sobre atributos nominales y numéricos. Los antecedentes de las reglas están formados por atributos nominales y/o condiciones difusas. La conformación de estas últimas requiere conocer el grado de pertenencia a los conjuntos difusos que definen a cada variable lingüística. Esta tesis propone tres alternativas distintas para resolver este punto. Uno de los aportes de esta tesis radica en la definición de la función de aptitud o fitness de cada partícula basada en un ”Criterio de Votación” que pondera de manera difusa la participación de las condiciones difusas en la conformación del antecedente. Su valor se obtiene a partir de los grados de pertenencia de los ejemplos que cumplen con la regla y se utiliza para reforzar el movimiento de la partícula en la dirección donde se encuentra el valor más alto. Con la utilización de PSO las partículas compiten entre ellas para encontrar a la mejor regla de la clase seleccionada. La medición se realizó sobre doce bases de datos del repositorio UCI (Machine Learning Repository) y tres casos reales en el área de crédito del Sistema Financiero del Ecuador asociadas al riesgo crediticio considerando un conjunto de variables micro y macroeconómicas. Otro de los aportes de esta tesis fue haber realizado una consideración especial en la morosidad del cliente teniendo en cuenta los días de vencimiento de la cartera otorgada; esto fue posible debido a que se tenía información del cliente en un horizonte de tiempo, una vez que el crédito se había concedido Se verificó que con este análisis las reglas difusas obtenidas a través de FRvarPSO permiten que el oficial de crédito de respuesta al cliente en menor tiempo, y principalmente disminuya el riesgo que representa el otorgamiento de crédito para las instituciones financieras. Lo anterior fue posible, debido a que al aplicar una regla difusa se toma el menor grado de pertenencia promedio de las condiciones difusas que forman el antecedente de la regla, con lo que se tiene una métrica proporcional al riesgo de su aplicación.
Tesis en cotutela con la Universitat Rovira i Virgili (URV) (España).
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
Reglas de Clasificación Difusas (Fuzzy Classification Rules)
Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization)
Minería de Datos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/101163

id SEDICI_7f948690526415aeaaf08bef2b044a0f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/101163
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo CrediticioJimbo Santana, Patricia RosalíaCiencias InformáticasReglas de Clasificación Difusas (Fuzzy Classification Rules)Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization)Minería de DatosEl aporte central de esta tesis es la definición de un nuevo método capaz de generar un conjunto de reglas de clasificación difusas de fácil interpretación, baja cardinalidad y una buena precisión. Estas características ayudan a identificar y comprender las relaciones presentes en los datos facilitando de esta forma la toma de decisiones. El nuevo método propuesto se denomina FRvarPSO (Fuzzy Rules variable Particle Swarm Oprmization) y combina una red neuronal competitiva con una técnica de optimización basada en cúmulo de partículas de población variable para la obtención de reglas de clasificación difusas, capaces de operar sobre atributos nominales y numéricos. Los antecedentes de las reglas están formados por atributos nominales y/o condiciones difusas. La conformación de estas últimas requiere conocer el grado de pertenencia a los conjuntos difusos que definen a cada variable lingüística. Esta tesis propone tres alternativas distintas para resolver este punto. Uno de los aportes de esta tesis radica en la definición de la función de aptitud o fitness de cada partícula basada en un ”Criterio de Votación” que pondera de manera difusa la participación de las condiciones difusas en la conformación del antecedente. Su valor se obtiene a partir de los grados de pertenencia de los ejemplos que cumplen con la regla y se utiliza para reforzar el movimiento de la partícula en la dirección donde se encuentra el valor más alto. Con la utilización de PSO las partículas compiten entre ellas para encontrar a la mejor regla de la clase seleccionada. La medición se realizó sobre doce bases de datos del repositorio UCI (Machine Learning Repository) y tres casos reales en el área de crédito del Sistema Financiero del Ecuador asociadas al riesgo crediticio considerando un conjunto de variables micro y macroeconómicas. Otro de los aportes de esta tesis fue haber realizado una consideración especial en la morosidad del cliente teniendo en cuenta los días de vencimiento de la cartera otorgada; esto fue posible debido a que se tenía información del cliente en un horizonte de tiempo, una vez que el crédito se había concedido Se verificó que con este análisis las reglas difusas obtenidas a través de FRvarPSO permiten que el oficial de crédito de respuesta al cliente en menor tiempo, y principalmente disminuya el riesgo que representa el otorgamiento de crédito para las instituciones financieras. Lo anterior fue posible, debido a que al aplicar una regla difusa se toma el menor grado de pertenencia promedio de las condiciones difusas que forman el antecedente de la regla, con lo que se tiene una métrica proporcional al riesgo de su aplicación.Tesis en cotutela con la Universitat Rovira i Virgili (URV) (España).Doctor en Ciencias InformáticasUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura CristinaBariviera, Aurelio F.Errecalde, Marcelo LuisLeguizamón, Mario GuillermoOlivas Varela, José Ángel2020-07-14info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/101163https://doi.org/10.35537/10915/101163spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:21:59Zoai:sedici.unlp.edu.ar:10915/101163Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:21:59.965SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
title Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
spellingShingle Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
Jimbo Santana, Patricia Rosalía
Ciencias Informáticas
Reglas de Clasificación Difusas (Fuzzy Classification Rules)
Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization)
Minería de Datos
title_short Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
title_full Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
title_fullStr Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
title_full_unstemmed Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
title_sort Obtención de reglas de clasificación difusas utilizando técnicas de optimización : Caso de estudio Riesgo Crediticio
dc.creator.none.fl_str_mv Jimbo Santana, Patricia Rosalía
author Jimbo Santana, Patricia Rosalía
author_facet Jimbo Santana, Patricia Rosalía
author_role author
dc.contributor.none.fl_str_mv Lanzarini, Laura Cristina
Bariviera, Aurelio F.
Errecalde, Marcelo Luis
Leguizamón, Mario Guillermo
Olivas Varela, José Ángel
dc.subject.none.fl_str_mv Ciencias Informáticas
Reglas de Clasificación Difusas (Fuzzy Classification Rules)
Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization)
Minería de Datos
topic Ciencias Informáticas
Reglas de Clasificación Difusas (Fuzzy Classification Rules)
Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization)
Minería de Datos
dc.description.none.fl_txt_mv El aporte central de esta tesis es la definición de un nuevo método capaz de generar un conjunto de reglas de clasificación difusas de fácil interpretación, baja cardinalidad y una buena precisión. Estas características ayudan a identificar y comprender las relaciones presentes en los datos facilitando de esta forma la toma de decisiones. El nuevo método propuesto se denomina FRvarPSO (Fuzzy Rules variable Particle Swarm Oprmization) y combina una red neuronal competitiva con una técnica de optimización basada en cúmulo de partículas de población variable para la obtención de reglas de clasificación difusas, capaces de operar sobre atributos nominales y numéricos. Los antecedentes de las reglas están formados por atributos nominales y/o condiciones difusas. La conformación de estas últimas requiere conocer el grado de pertenencia a los conjuntos difusos que definen a cada variable lingüística. Esta tesis propone tres alternativas distintas para resolver este punto. Uno de los aportes de esta tesis radica en la definición de la función de aptitud o fitness de cada partícula basada en un ”Criterio de Votación” que pondera de manera difusa la participación de las condiciones difusas en la conformación del antecedente. Su valor se obtiene a partir de los grados de pertenencia de los ejemplos que cumplen con la regla y se utiliza para reforzar el movimiento de la partícula en la dirección donde se encuentra el valor más alto. Con la utilización de PSO las partículas compiten entre ellas para encontrar a la mejor regla de la clase seleccionada. La medición se realizó sobre doce bases de datos del repositorio UCI (Machine Learning Repository) y tres casos reales en el área de crédito del Sistema Financiero del Ecuador asociadas al riesgo crediticio considerando un conjunto de variables micro y macroeconómicas. Otro de los aportes de esta tesis fue haber realizado una consideración especial en la morosidad del cliente teniendo en cuenta los días de vencimiento de la cartera otorgada; esto fue posible debido a que se tenía información del cliente en un horizonte de tiempo, una vez que el crédito se había concedido Se verificó que con este análisis las reglas difusas obtenidas a través de FRvarPSO permiten que el oficial de crédito de respuesta al cliente en menor tiempo, y principalmente disminuya el riesgo que representa el otorgamiento de crédito para las instituciones financieras. Lo anterior fue posible, debido a que al aplicar una regla difusa se toma el menor grado de pertenencia promedio de las condiciones difusas que forman el antecedente de la regla, con lo que se tiene una métrica proporcional al riesgo de su aplicación.
Tesis en cotutela con la Universitat Rovira i Virgili (URV) (España).
Doctor en Ciencias Informáticas
Universidad Nacional de La Plata
Facultad de Informática
description El aporte central de esta tesis es la definición de un nuevo método capaz de generar un conjunto de reglas de clasificación difusas de fácil interpretación, baja cardinalidad y una buena precisión. Estas características ayudan a identificar y comprender las relaciones presentes en los datos facilitando de esta forma la toma de decisiones. El nuevo método propuesto se denomina FRvarPSO (Fuzzy Rules variable Particle Swarm Oprmization) y combina una red neuronal competitiva con una técnica de optimización basada en cúmulo de partículas de población variable para la obtención de reglas de clasificación difusas, capaces de operar sobre atributos nominales y numéricos. Los antecedentes de las reglas están formados por atributos nominales y/o condiciones difusas. La conformación de estas últimas requiere conocer el grado de pertenencia a los conjuntos difusos que definen a cada variable lingüística. Esta tesis propone tres alternativas distintas para resolver este punto. Uno de los aportes de esta tesis radica en la definición de la función de aptitud o fitness de cada partícula basada en un ”Criterio de Votación” que pondera de manera difusa la participación de las condiciones difusas en la conformación del antecedente. Su valor se obtiene a partir de los grados de pertenencia de los ejemplos que cumplen con la regla y se utiliza para reforzar el movimiento de la partícula en la dirección donde se encuentra el valor más alto. Con la utilización de PSO las partículas compiten entre ellas para encontrar a la mejor regla de la clase seleccionada. La medición se realizó sobre doce bases de datos del repositorio UCI (Machine Learning Repository) y tres casos reales en el área de crédito del Sistema Financiero del Ecuador asociadas al riesgo crediticio considerando un conjunto de variables micro y macroeconómicas. Otro de los aportes de esta tesis fue haber realizado una consideración especial en la morosidad del cliente teniendo en cuenta los días de vencimiento de la cartera otorgada; esto fue posible debido a que se tenía información del cliente en un horizonte de tiempo, una vez que el crédito se había concedido Se verificó que con este análisis las reglas difusas obtenidas a través de FRvarPSO permiten que el oficial de crédito de respuesta al cliente en menor tiempo, y principalmente disminuya el riesgo que representa el otorgamiento de crédito para las instituciones financieras. Lo anterior fue posible, debido a que al aplicar una regla difusa se toma el menor grado de pertenencia promedio de las condiciones difusas que forman el antecedente de la regla, con lo que se tiene una métrica proporcional al riesgo de su aplicación.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-14
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/101163
https://doi.org/10.35537/10915/101163
url http://sedici.unlp.edu.ar/handle/10915/101163
https://doi.org/10.35537/10915/101163
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616095778996224
score 13.069144