Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius

Autores
Cáceres, Mariano; Guzmán, Eduardo; Alvarez-Costa, Agustín; Ortega, Francisco; Rubio, Ramón G.; Coviella, Carlos; Santo Orihuela, Pablo L.; Vassena, Claudia V.; Lucía, Alejandro
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Synthetic insecticides have been used for a long time as one of the most effective tools for insect pest control. However, the re-emergence of insect pests and their fast development of resistance, as has occurred for pyrethroid-resistant bed bugs Cimex lectularius L., make it necessary to develop new and safe strategies for effective pest control. This has fostered the research on new eco-sustainable formulations based on essential oils, which allows reducing the impact associated with the intensive use of synthetic insecticides on the environment and their effects on human health. This research explores the stability of water/eugenol/ethanol surfactantless emulsions loaded with imidacloprid (0.003 wt%), and their toxicity against a resistant bed bug strain. The results have shown that these emulsions enable the solubilization of a poorly water-soluble drug, such as the imidacloprid, without any significant modification of their stability. Furthermore, the application of the obtained formulations against the pyrethroid-resistant bed bug results in mortality in the 50–85% range upon topical and spray applications, with the increase of the eugenol content enhancing the effectiveness of the formulations. It may be expected that the ternary water/eugenol/ethanol mixtures could be further developed in the preparation of ready to use formulations, enabling the dispersion of insecticides for pest control.
Facultad de Ciencias Agrarias y Forestales
Materia
Ciencias Agrarias
Eugenol
Surfactantless emulsions
Ternary mixtures
Imidacloprid
Bed bugs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/107507

id SEDICI_a0f584e652fd673c92896aa064a6bf1d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/107507
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectulariusCáceres, MarianoGuzmán, EduardoAlvarez-Costa, AgustínOrtega, FranciscoRubio, Ramón G.Coviella, CarlosSanto Orihuela, Pablo L.Vassena, Claudia V.Lucía, AlejandroCiencias AgrariasEugenolSurfactantless emulsionsTernary mixturesImidaclopridBed bugsSynthetic insecticides have been used for a long time as one of the most effective tools for insect pest control. However, the re-emergence of insect pests and their fast development of resistance, as has occurred for pyrethroid-resistant bed bugs Cimex lectularius L., make it necessary to develop new and safe strategies for effective pest control. This has fostered the research on new eco-sustainable formulations based on essential oils, which allows reducing the impact associated with the intensive use of synthetic insecticides on the environment and their effects on human health. This research explores the stability of water/eugenol/ethanol surfactantless emulsions loaded with imidacloprid (0.003 wt%), and their toxicity against a resistant bed bug strain. The results have shown that these emulsions enable the solubilization of a poorly water-soluble drug, such as the imidacloprid, without any significant modification of their stability. Furthermore, the application of the obtained formulations against the pyrethroid-resistant bed bug results in mortality in the 50–85% range upon topical and spray applications, with the increase of the eugenol content enhancing the effectiveness of the formulations. It may be expected that the ternary water/eugenol/ethanol mixtures could be further developed in the preparation of ready to use formulations, enabling the dispersion of insecticides for pest control.Facultad de Ciencias Agrarias y Forestales2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/107507enginfo:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7287993&blobtype=pdfinfo:eu-repo/semantics/altIdentifier/issn/1420-3049info:eu-repo/semantics/altIdentifier/pmid/32414128info:eu-repo/semantics/altIdentifier/doi/10.3390/molecules25102290info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:04:47Zoai:sedici.unlp.edu.ar:10915/107507Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:04:47.525SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
title Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
spellingShingle Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
Cáceres, Mariano
Ciencias Agrarias
Eugenol
Surfactantless emulsions
Ternary mixtures
Imidacloprid
Bed bugs
title_short Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
title_full Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
title_fullStr Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
title_full_unstemmed Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
title_sort Surfactantless Emulsions Containing Eugenol for Imidacloprid Solubilization: Physicochemical Characterization and Toxicity against Insecticide-Resistant Cimex lectularius
dc.creator.none.fl_str_mv Cáceres, Mariano
Guzmán, Eduardo
Alvarez-Costa, Agustín
Ortega, Francisco
Rubio, Ramón G.
Coviella, Carlos
Santo Orihuela, Pablo L.
Vassena, Claudia V.
Lucía, Alejandro
author Cáceres, Mariano
author_facet Cáceres, Mariano
Guzmán, Eduardo
Alvarez-Costa, Agustín
Ortega, Francisco
Rubio, Ramón G.
Coviella, Carlos
Santo Orihuela, Pablo L.
Vassena, Claudia V.
Lucía, Alejandro
author_role author
author2 Guzmán, Eduardo
Alvarez-Costa, Agustín
Ortega, Francisco
Rubio, Ramón G.
Coviella, Carlos
Santo Orihuela, Pablo L.
Vassena, Claudia V.
Lucía, Alejandro
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Agrarias
Eugenol
Surfactantless emulsions
Ternary mixtures
Imidacloprid
Bed bugs
topic Ciencias Agrarias
Eugenol
Surfactantless emulsions
Ternary mixtures
Imidacloprid
Bed bugs
dc.description.none.fl_txt_mv Synthetic insecticides have been used for a long time as one of the most effective tools for insect pest control. However, the re-emergence of insect pests and their fast development of resistance, as has occurred for pyrethroid-resistant bed bugs Cimex lectularius L., make it necessary to develop new and safe strategies for effective pest control. This has fostered the research on new eco-sustainable formulations based on essential oils, which allows reducing the impact associated with the intensive use of synthetic insecticides on the environment and their effects on human health. This research explores the stability of water/eugenol/ethanol surfactantless emulsions loaded with imidacloprid (0.003 wt%), and their toxicity against a resistant bed bug strain. The results have shown that these emulsions enable the solubilization of a poorly water-soluble drug, such as the imidacloprid, without any significant modification of their stability. Furthermore, the application of the obtained formulations against the pyrethroid-resistant bed bug results in mortality in the 50–85% range upon topical and spray applications, with the increase of the eugenol content enhancing the effectiveness of the formulations. It may be expected that the ternary water/eugenol/ethanol mixtures could be further developed in the preparation of ready to use formulations, enabling the dispersion of insecticides for pest control.
Facultad de Ciencias Agrarias y Forestales
description Synthetic insecticides have been used for a long time as one of the most effective tools for insect pest control. However, the re-emergence of insect pests and their fast development of resistance, as has occurred for pyrethroid-resistant bed bugs Cimex lectularius L., make it necessary to develop new and safe strategies for effective pest control. This has fostered the research on new eco-sustainable formulations based on essential oils, which allows reducing the impact associated with the intensive use of synthetic insecticides on the environment and their effects on human health. This research explores the stability of water/eugenol/ethanol surfactantless emulsions loaded with imidacloprid (0.003 wt%), and their toxicity against a resistant bed bug strain. The results have shown that these emulsions enable the solubilization of a poorly water-soluble drug, such as the imidacloprid, without any significant modification of their stability. Furthermore, the application of the obtained formulations against the pyrethroid-resistant bed bug results in mortality in the 50–85% range upon topical and spray applications, with the increase of the eugenol content enhancing the effectiveness of the formulations. It may be expected that the ternary water/eugenol/ethanol mixtures could be further developed in the preparation of ready to use formulations, enabling the dispersion of insecticides for pest control.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/107507
url http://sedici.unlp.edu.ar/handle/10915/107507
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7287993&blobtype=pdf
info:eu-repo/semantics/altIdentifier/issn/1420-3049
info:eu-repo/semantics/altIdentifier/pmid/32414128
info:eu-repo/semantics/altIdentifier/doi/10.3390/molecules25102290
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783324835545088
score 12.982451