Multi-objective optimization with a Gaussian PSO algorithm
- Autores
- Esquivel, Susana Cecilia; Cagnina, Leticia
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Particle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSO
Particle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective problems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems. The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance, an elitist policy, and a shake-mechanism to maintain diversity. In order to validate our algorithm, we use four well-known test functions with different characteristics. Preliminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm representative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a multi-objective PSO based algorithm. The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO.
Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
optimización multi-objetivo
Particle Swarm Optimization
optimalidad Pareto - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21685
Ver los metadatos del registro completo
id |
SEDICI_9bd2f1ed55b65aa04d58f8ef40b3ec9c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21685 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Multi-objective optimization with a Gaussian PSO algorithmEsquivel, Susana CeciliaCagnina, LeticiaCiencias Informáticasoptimización multi-objetivoParticle Swarm Optimizationoptimalidad ParetoParticle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSOParticle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective problems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems. The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance, an elitist policy, and a shake-mechanism to maintain diversity. In order to validate our algorithm, we use four well-known test functions with different characteristics. Preliminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm representative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a multi-objective PSO based algorithm. The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21685enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:33Zoai:sedici.unlp.edu.ar:10915/21685Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:33.263SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Multi-objective optimization with a Gaussian PSO algorithm |
title |
Multi-objective optimization with a Gaussian PSO algorithm |
spellingShingle |
Multi-objective optimization with a Gaussian PSO algorithm Esquivel, Susana Cecilia Ciencias Informáticas optimización multi-objetivo Particle Swarm Optimization optimalidad Pareto |
title_short |
Multi-objective optimization with a Gaussian PSO algorithm |
title_full |
Multi-objective optimization with a Gaussian PSO algorithm |
title_fullStr |
Multi-objective optimization with a Gaussian PSO algorithm |
title_full_unstemmed |
Multi-objective optimization with a Gaussian PSO algorithm |
title_sort |
Multi-objective optimization with a Gaussian PSO algorithm |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Cagnina, Leticia |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Cagnina, Leticia |
author_role |
author |
author2 |
Cagnina, Leticia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas optimización multi-objetivo Particle Swarm Optimization optimalidad Pareto |
topic |
Ciencias Informáticas optimización multi-objetivo Particle Swarm Optimization optimalidad Pareto |
dc.description.none.fl_txt_mv |
Particle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSO Particle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective problems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems. The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance, an elitist policy, and a shake-mechanism to maintain diversity. In order to validate our algorithm, we use four well-known test functions with different characteristics. Preliminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm representative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a multi-objective PSO based algorithm. The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO. Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Particle Swarm Optimization es una heurística popular usada para resolver adecuada y efectivamente problemas mono-objetivo. En este artículo, presentamos una primera adaptación de esta heurística para tratar problemas multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana, dominancia Pareto, una política elitista, un archivo externo y un shake-mecanismo para mantener la diversidad. Para validar nuestro algoritmo, usamos cuatro funciones de prueba bien conocidas, con diferentes características. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurística PSO. La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSO |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21685 |
url |
http://sedici.unlp.edu.ar/handle/10915/21685 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260113320050688 |
score |
13.13397 |