A particle swarm optimizer for multi-objective optimization
- Autores
 - Cagnina, Leticia; Esquivel, Susana Cecilia; Coello Coello, Carlos
 - Año de publicación
 - 2005
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems.
Facultad de Informática - Materia
 - 
            
        Ciencias Informáticas
Optimization
pareto optimality - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - http://creativecommons.org/licenses/by-nc/3.0/
 - Repositorio
 .jpg)
- Institución
 - Universidad Nacional de La Plata
 - OAI Identificador
 - oai:sedici.unlp.edu.ar:10915/9594
 
Ver los metadatos del registro completo
| id | 
                                SEDICI_ac733c4b032b7449950a26f6fce0dbf1 | 
      
|---|---|
| oai_identifier_str | 
                                oai:sedici.unlp.edu.ar:10915/9594 | 
      
| network_acronym_str | 
                                SEDICI | 
      
| repository_id_str | 
                                1329 | 
      
| network_name_str | 
                                SEDICI (UNLP) | 
      
| spelling | 
                                A particle swarm optimizer for multi-objective optimizationCagnina, LeticiaEsquivel, Susana CeciliaCoello Coello, CarlosCiencias InformáticasOptimizationpareto optimalityThis paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems.Facultad de Informática2005-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf204-210http://sedici.unlp.edu.ar/handle/10915/9594enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-7.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T14:56:28Zoai:sedici.unlp.edu.ar:10915/9594Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 14:56:28.98SEDICI (UNLP) - Universidad Nacional de La Platafalse | 
      
| dc.title.none.fl_str_mv | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| title | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| spellingShingle | 
                                A particle swarm optimizer for multi-objective optimization Cagnina, Leticia Ciencias Informáticas Optimization pareto optimality  | 
      
| title_short | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| title_full | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| title_fullStr | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| title_full_unstemmed | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| title_sort | 
                                A particle swarm optimizer for multi-objective optimization | 
      
| dc.creator.none.fl_str_mv | 
                                Cagnina, Leticia Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author | 
                                Cagnina, Leticia | 
      
| author_facet | 
                                Cagnina, Leticia Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Esquivel, Susana Cecilia Coello Coello, Carlos  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                Ciencias Informáticas Optimization pareto optimality  | 
      
| topic | 
                                Ciencias Informáticas Optimization pareto optimality  | 
      
| dc.description.none.fl_txt_mv | 
                                This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems. Facultad de Informática  | 
      
| description | 
                                This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multiobjective optimization problems. | 
      
| publishDate | 
                                2005 | 
      
| dc.date.none.fl_str_mv | 
                                2005-12 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://sedici.unlp.edu.ar/handle/10915/9594 | 
      
| url | 
                                http://sedici.unlp.edu.ar/handle/10915/9594 | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Dec05-7.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)  | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf 204-210  | 
      
| dc.source.none.fl_str_mv | 
                                reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP  | 
      
| reponame_str | 
                                SEDICI (UNLP) | 
      
| collection | 
                                SEDICI (UNLP) | 
      
| instname_str | 
                                Universidad Nacional de La Plata | 
      
| instacron_str | 
                                UNLP | 
      
| institution | 
                                UNLP | 
      
| repository.name.fl_str_mv | 
                                SEDICI (UNLP) - Universidad Nacional de La Plata | 
      
| repository.mail.fl_str_mv | 
                                alira@sedici.unlp.edu.ar | 
      
| _version_ | 
                                1847427710632067072 | 
      
| score | 
                                12.589754 |