A particle swarm optimizer for multi-objective optimization
- Autores
- Cagnina, Leticia; Esquivel, Susana Cecilia
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multi-objective optimization problems.
Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Optimization
particle swarm optimization
multi-objective optimization
Pareto optimality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22941
Ver los metadatos del registro completo
id |
SEDICI_da91284774d9f23f4f02fe8ceb830600 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22941 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A particle swarm optimizer for multi-objective optimizationCagnina, LeticiaEsquivel, Susana CeciliaCiencias InformáticasOptimizationparticle swarm optimizationmulti-objective optimizationPareto optimalityThis paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multi-objective optimization problems.Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22941enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T11:58:38Zoai:sedici.unlp.edu.ar:10915/22941Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 11:58:38.929SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A particle swarm optimizer for multi-objective optimization |
title |
A particle swarm optimizer for multi-objective optimization |
spellingShingle |
A particle swarm optimizer for multi-objective optimization Cagnina, Leticia Ciencias Informáticas Optimization particle swarm optimization multi-objective optimization Pareto optimality |
title_short |
A particle swarm optimizer for multi-objective optimization |
title_full |
A particle swarm optimizer for multi-objective optimization |
title_fullStr |
A particle swarm optimizer for multi-objective optimization |
title_full_unstemmed |
A particle swarm optimizer for multi-objective optimization |
title_sort |
A particle swarm optimizer for multi-objective optimization |
dc.creator.none.fl_str_mv |
Cagnina, Leticia Esquivel, Susana Cecilia |
author |
Cagnina, Leticia |
author_facet |
Cagnina, Leticia Esquivel, Susana Cecilia |
author_role |
author |
author2 |
Esquivel, Susana Cecilia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Optimization particle swarm optimization multi-objective optimization Pareto optimality |
topic |
Ciencias Informáticas Optimization particle swarm optimization multi-objective optimization Pareto optimality |
dc.description.none.fl_txt_mv |
This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multi-objective optimization problems. Eje: VI Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper proposes a hybrid particle swarm approach called Simple Multi-Objective Particle Swarm Optimizer (SMOPSO) which incorporates Pareto dominance, an elitist policy, and two techniques to maintain diversity: a mutation operator and a grid which is used as a geographical location over objective function space. In order to validate our approach we use three well-known test functions proposed in the specialized literature. Preliminary simulations results are presented and compared with those obtained with the Pareto Archived Evolution Strategy (PAES) and the Multi-Objective Genetic Algorithm 2 (MOGA2). These results also show that the SMOPSO algorithm is a promising alternative to tackle multi-objective optimization problems. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22941 |
url |
http://sedici.unlp.edu.ar/handle/10915/22941 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842903778471182336 |
score |
12.993085 |