Completing categorical algebras : Extended abstract

Autores
Bloom, Stephen L.; Esik, Zoltán
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Let Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimits of ω-chains. (N is the linearly ordered set of the nonnegative integers considered as a category as usual.) We prove that for any cΣa C there is an ω-continuous cΣa C ω , unique up to equivalence, which forms a “free continuous completion” of C. We generalize the notion of inequation (and equation) and show the inequations or equations that hold in C also hold in C ω . We then find examples of this completion when – C is a cΣa of finite Σ-trees – C is an ordered Σ algebra – C is a cΣa of finite A-sychronization trees – C is a cΣa of finite words on A.
4th IFIP International Conference on Theoretical Computer Science
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
categorical algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24407

id SEDICI_9600dbc85a803f83b248146bad29b04e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24407
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Completing categorical algebras : Extended abstractBloom, Stephen L.Esik, ZoltánCiencias Informáticascategorical algebrasLet Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimits of ω-chains. (N is the linearly ordered set of the nonnegative integers considered as a category as usual.) We prove that for any cΣa C there is an ω-continuous cΣa C ω , unique up to equivalence, which forms a “free continuous completion” of C. We generalize the notion of inequation (and equation) and show the inequations or equations that hold in C also hold in C ω . We then find examples of this completion when – C is a cΣa of finite Σ-trees – C is an ordered Σ algebra – C is a cΣa of finite A-sychronization trees – C is a cΣa of finite words on A.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24407enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:50Zoai:sedici.unlp.edu.ar:10915/24407Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:51.014SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Completing categorical algebras : Extended abstract
title Completing categorical algebras : Extended abstract
spellingShingle Completing categorical algebras : Extended abstract
Bloom, Stephen L.
Ciencias Informáticas
categorical algebras
title_short Completing categorical algebras : Extended abstract
title_full Completing categorical algebras : Extended abstract
title_fullStr Completing categorical algebras : Extended abstract
title_full_unstemmed Completing categorical algebras : Extended abstract
title_sort Completing categorical algebras : Extended abstract
dc.creator.none.fl_str_mv Bloom, Stephen L.
Esik, Zoltán
author Bloom, Stephen L.
author_facet Bloom, Stephen L.
Esik, Zoltán
author_role author
author2 Esik, Zoltán
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
categorical algebras
topic Ciencias Informáticas
categorical algebras
dc.description.none.fl_txt_mv Let Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimits of ω-chains. (N is the linearly ordered set of the nonnegative integers considered as a category as usual.) We prove that for any cΣa C there is an ω-continuous cΣa C ω , unique up to equivalence, which forms a “free continuous completion” of C. We generalize the notion of inequation (and equation) and show the inequations or equations that hold in C also hold in C ω . We then find examples of this completion when – C is a cΣa of finite Σ-trees – C is an ordered Σ algebra – C is a cΣa of finite A-sychronization trees – C is a cΣa of finite words on A.
4th IFIP International Conference on Theoretical Computer Science
Red de Universidades con Carreras en Informática (RedUNCI)
description Let Σ be a ranked set. A categorical Σ-algebra, cΣa for C, for short, is a small category C equipped with a functor σC : C n each σ ∈ Σn , n ≥ 0. A continuous categorical Σ-algebra is a cΣa which C; has an initial object and all colimits of ω-chains, i.e., functors N each functor σC preserves colimits of ω-chains. (N is the linearly ordered set of the nonnegative integers considered as a category as usual.) We prove that for any cΣa C there is an ω-continuous cΣa C ω , unique up to equivalence, which forms a “free continuous completion” of C. We generalize the notion of inequation (and equation) and show the inequations or equations that hold in C also hold in C ω . We then find examples of this completion when – C is a cΣa of finite Σ-trees – C is an ordered Σ algebra – C is a cΣa of finite A-sychronization trees – C is a cΣa of finite words on A.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24407
url http://sedici.unlp.edu.ar/handle/10915/24407
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34633-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615818076225536
score 13.070432