A Concrete Categorical Semantics of Lambda-S
- Autores
- Díaz Caro, Alejandro; Malherbe, Octavio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have been given when first presented, with such an interpretation: superposed types are interpreted as vectors spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.
Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
Fil: Malherbe, Octavio. Universidad de la República; Uruguay - Materia
-
ALGEBRAIC LAMBDA-CALCULUS
CATEGORICAL SEMANTICS
QUANTUM COMPUTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/212899
Ver los metadatos del registro completo
id |
CONICETDig_0e0d6e8c2bac223bcb23e821b177d394 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/212899 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Concrete Categorical Semantics of Lambda-SDíaz Caro, AlejandroMalherbe, OctavioALGEBRAIC LAMBDA-CALCULUSCATEGORICAL SEMANTICSQUANTUM COMPUTINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have been given when first presented, with such an interpretation: superposed types are interpreted as vectors spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning.Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Malherbe, Octavio. Universidad de la República; UruguayElsevier Science2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/212899Díaz Caro, Alejandro; Malherbe, Octavio; A Concrete Categorical Semantics of Lambda-S; Elsevier Science; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 83-1001571-0661CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2019.07.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571066119300246info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:58Zoai:ri.conicet.gov.ar:11336/212899instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:58.467CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Concrete Categorical Semantics of Lambda-S |
title |
A Concrete Categorical Semantics of Lambda-S |
spellingShingle |
A Concrete Categorical Semantics of Lambda-S Díaz Caro, Alejandro ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
title_short |
A Concrete Categorical Semantics of Lambda-S |
title_full |
A Concrete Categorical Semantics of Lambda-S |
title_fullStr |
A Concrete Categorical Semantics of Lambda-S |
title_full_unstemmed |
A Concrete Categorical Semantics of Lambda-S |
title_sort |
A Concrete Categorical Semantics of Lambda-S |
dc.creator.none.fl_str_mv |
Díaz Caro, Alejandro Malherbe, Octavio |
author |
Díaz Caro, Alejandro |
author_facet |
Díaz Caro, Alejandro Malherbe, Octavio |
author_role |
author |
author2 |
Malherbe, Octavio |
author2_role |
author |
dc.subject.none.fl_str_mv |
ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
topic |
ALGEBRAIC LAMBDA-CALCULUS CATEGORICAL SEMANTICS QUANTUM COMPUTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have been given when first presented, with such an interpretation: superposed types are interpreted as vectors spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning. Fil: Díaz Caro, Alejandro. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Malherbe, Octavio. Universidad de la República; Uruguay |
description |
Lambda-S is an extension to first-order lambda calculus unifying two approaches of non-cloning in quantum lambda-calculi. One is to forbid duplication of variables, while the other is to consider all lambda-terms as algebraic linear functions. The type system of Lambda-S have a constructor S such that a type A is considered as the base of a vector space while S(A) is its span. A first semantics of this calculus have been given when first presented, with such an interpretation: superposed types are interpreted as vectors spaces while non-superposed types as their basis. In this paper we give a concrete categorical semantics of Lambda-S, showing that S is interpreted as the composition of two functors in an adjunction relation between the category of sets and the category of vector spaces over C. The right adjoint is a forgetful functor U, which is hidden in the language, and plays a central role in the computational reasoning. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/212899 Díaz Caro, Alejandro; Malherbe, Octavio; A Concrete Categorical Semantics of Lambda-S; Elsevier Science; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 83-100 1571-0661 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/212899 |
identifier_str_mv |
Díaz Caro, Alejandro; Malherbe, Octavio; A Concrete Categorical Semantics of Lambda-S; Elsevier Science; Electronic Notes in Theoretical Computer Science; 344; 8-2019; 83-100 1571-0661 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.entcs.2019.07.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571066119300246 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269431894376448 |
score |
13.13397 |