Topological representation for monadic implication algebras
- Autores
- Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
DUAL CATEGORICAL EQUIVALENCE
IMPLICATION ALGEBRA
IMPLICATION SPACES
MONADIC BOOLEAN ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/80664
Ver los metadatos del registro completo
id |
CONICETDig_61ce2eeaee57960ddfc18ba737710122 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/80664 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Topological representation for monadic implication algebrasAbad, ManuelCimadamore, Cecilia RossanaDíaz Varela, José PatricioDUAL CATEGORICAL EQUIVALENCEIMPLICATION ALGEBRAIMPLICATION SPACESMONADIC BOOLEAN ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaDe Gruyter2009-01-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80664Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-3091895-10741644-3616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-009-0002-yinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2009.7.issue-2/s11533-009-0002-y/s11533-009-0002-y.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:31Zoai:ri.conicet.gov.ar:11336/80664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:31.645CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Topological representation for monadic implication algebras |
title |
Topological representation for monadic implication algebras |
spellingShingle |
Topological representation for monadic implication algebras Abad, Manuel DUAL CATEGORICAL EQUIVALENCE IMPLICATION ALGEBRA IMPLICATION SPACES MONADIC BOOLEAN ALGEBRA |
title_short |
Topological representation for monadic implication algebras |
title_full |
Topological representation for monadic implication algebras |
title_fullStr |
Topological representation for monadic implication algebras |
title_full_unstemmed |
Topological representation for monadic implication algebras |
title_sort |
Topological representation for monadic implication algebras |
dc.creator.none.fl_str_mv |
Abad, Manuel Cimadamore, Cecilia Rossana Díaz Varela, José Patricio |
author |
Abad, Manuel |
author_facet |
Abad, Manuel Cimadamore, Cecilia Rossana Díaz Varela, José Patricio |
author_role |
author |
author2 |
Cimadamore, Cecilia Rossana Díaz Varela, José Patricio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DUAL CATEGORICAL EQUIVALENCE IMPLICATION ALGEBRA IMPLICATION SPACES MONADIC BOOLEAN ALGEBRA |
topic |
DUAL CATEGORICAL EQUIVALENCE IMPLICATION ALGEBRA IMPLICATION SPACES MONADIC BOOLEAN ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces. Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-17 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/80664 Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-309 1895-1074 1644-3616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/80664 |
identifier_str_mv |
Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-309 1895-1074 1644-3616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-009-0002-y info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2009.7.issue-2/s11533-009-0002-y/s11533-009-0002-y.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614230159917056 |
score |
13.070432 |