Topological representation for monadic implication algebras

Autores
Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
DUAL CATEGORICAL EQUIVALENCE
IMPLICATION ALGEBRA
IMPLICATION SPACES
MONADIC BOOLEAN ALGEBRA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/80664

id CONICETDig_61ce2eeaee57960ddfc18ba737710122
oai_identifier_str oai:ri.conicet.gov.ar:11336/80664
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Topological representation for monadic implication algebrasAbad, ManuelCimadamore, Cecilia RossanaDíaz Varela, José PatricioDUAL CATEGORICAL EQUIVALENCEIMPLICATION ALGEBRAIMPLICATION SPACESMONADIC BOOLEAN ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaDe Gruyter2009-01-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/80664Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-3091895-10741644-3616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-009-0002-yinfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2009.7.issue-2/s11533-009-0002-y/s11533-009-0002-y.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:31Zoai:ri.conicet.gov.ar:11336/80664instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:31.645CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Topological representation for monadic implication algebras
title Topological representation for monadic implication algebras
spellingShingle Topological representation for monadic implication algebras
Abad, Manuel
DUAL CATEGORICAL EQUIVALENCE
IMPLICATION ALGEBRA
IMPLICATION SPACES
MONADIC BOOLEAN ALGEBRA
title_short Topological representation for monadic implication algebras
title_full Topological representation for monadic implication algebras
title_fullStr Topological representation for monadic implication algebras
title_full_unstemmed Topological representation for monadic implication algebras
title_sort Topological representation for monadic implication algebras
dc.creator.none.fl_str_mv Abad, Manuel
Cimadamore, Cecilia Rossana
Díaz Varela, José Patricio
author Abad, Manuel
author_facet Abad, Manuel
Cimadamore, Cecilia Rossana
Díaz Varela, José Patricio
author_role author
author2 Cimadamore, Cecilia Rossana
Díaz Varela, José Patricio
author2_role author
author
dc.subject.none.fl_str_mv DUAL CATEGORICAL EQUIVALENCE
IMPLICATION ALGEBRA
IMPLICATION SPACES
MONADIC BOOLEAN ALGEBRA
topic DUAL CATEGORICAL EQUIVALENCE
IMPLICATION ALGEBRA
IMPLICATION SPACES
MONADIC BOOLEAN ALGEBRA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
Fil: Abad, Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cimadamore, Cecilia Rossana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Díaz Varela, José Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.
publishDate 2009
dc.date.none.fl_str_mv 2009-01-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/80664
Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-309
1895-1074
1644-3616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/80664
identifier_str_mv Abad, Manuel; Cimadamore, Cecilia Rossana; Díaz Varela, José Patricio; Topological representation for monadic implication algebras; De Gruyter; Central European Journal of Mathematics - (Online); 7; 2; 17-1-2009; 299-309
1895-1074
1644-3616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.2478/s11533-009-0002-y
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/math.2009.7.issue-2/s11533-009-0002-y/s11533-009-0002-y.xml
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614230159917056
score 13.070432