Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
- Autores
- Stark, Natalia; Minetti, Gabriela F.; Salto, Carolina
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.
XVII Workshop Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
adaptive algorithms
mutation probability
Algoritmos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/55739
Ver los metadatos del registro completo
id |
SEDICI_94dc4b92f6956f6bc3aa3e3a3517cc34 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/55739 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic AlgorithmsStark, NataliaMinetti, Gabriela F.Salto, CarolinaCiencias Informáticasadaptive algorithmsmutation probabilityAlgoritmosTraditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.XVII Workshop Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf75-84http://sedici.unlp.edu.ar/handle/10915/55739enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:05:48Zoai:sedici.unlp.edu.ar:10915/55739Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:05:48.959SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
title |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
spellingShingle |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms Stark, Natalia Ciencias Informáticas adaptive algorithms mutation probability Algoritmos |
title_short |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
title_full |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
title_fullStr |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
title_full_unstemmed |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
title_sort |
Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms |
dc.creator.none.fl_str_mv |
Stark, Natalia Minetti, Gabriela F. Salto, Carolina |
author |
Stark, Natalia |
author_facet |
Stark, Natalia Minetti, Gabriela F. Salto, Carolina |
author_role |
author |
author2 |
Minetti, Gabriela F. Salto, Carolina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas adaptive algorithms mutation probability Algoritmos |
topic |
Ciencias Informáticas adaptive algorithms mutation probability Algoritmos |
dc.description.none.fl_txt_mv |
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies. XVII Workshop Agentes y Sistemas Inteligentes (WASI). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/55739 |
url |
http://sedici.unlp.edu.ar/handle/10915/55739 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/55718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 75-84 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615928618156032 |
score |
13.070432 |