Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms

Autores
Stark, Natalia; Minetti, Gabriela F.; Salto, Carolina
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.
XVII Workshop Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
adaptive algorithms
mutation probability
Algoritmos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/55739

id SEDICI_94dc4b92f6956f6bc3aa3e3a3517cc34
oai_identifier_str oai:sedici.unlp.edu.ar:10915/55739
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic AlgorithmsStark, NataliaMinetti, Gabriela F.Salto, CarolinaCiencias Informáticasadaptive algorithmsmutation probabilityAlgoritmosTraditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.XVII Workshop Agentes y Sistemas Inteligentes (WASI).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf75-84http://sedici.unlp.edu.ar/handle/10915/55739enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:05:48Zoai:sedici.unlp.edu.ar:10915/55739Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:05:48.959SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
title Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
spellingShingle Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
Stark, Natalia
Ciencias Informáticas
adaptive algorithms
mutation probability
Algoritmos
title_short Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
title_full Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
title_fullStr Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
title_full_unstemmed Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
title_sort Comparison of Different Approaches for Adapting Mutation Probabilities in Genetic Algorithms
dc.creator.none.fl_str_mv Stark, Natalia
Minetti, Gabriela F.
Salto, Carolina
author Stark, Natalia
author_facet Stark, Natalia
Minetti, Gabriela F.
Salto, Carolina
author_role author
author2 Minetti, Gabriela F.
Salto, Carolina
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
adaptive algorithms
mutation probability
Algoritmos
topic Ciencias Informáticas
adaptive algorithms
mutation probability
Algoritmos
dc.description.none.fl_txt_mv Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.
XVII Workshop Agentes y Sistemas Inteligentes (WASI).
Red de Universidades con Carreras en Informática (RedUNCI)
description Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. In this paper we compare three different adaptive algorithms that include strategies to modify the mutation probability without external control. One adaptive strategy uses the genetic diversity present in the population to update the mutation probability. Other strategy is based on the ideas of reinforcement learning and the last one varies the probabilities of mutation depending on the fitness values of the solution. All these strategies eliminate a very expensive computational phase related to the pre-tuning of the algorithmic parameters. The empirical comparisons show that if the genetic algorithm uses the genetic diversity, as the strategy for adapting the mutation probability outperforms the other two strategies.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/55739
url http://sedici.unlp.edu.ar/handle/10915/55739
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/reference/hdl/10915/55718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
75-84
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615928618156032
score 13.070432