Adapting distributed evolutionary algorithms to heterogeneous hardware
- Autores
- Salto, Carolina; Alba, Enrique
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases.
Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Alba, Enrique. Universidad de Málaga; España - Materia
-
distributed computing
heterogeneity
parallel algorithms
metaheuristics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/114217
Ver los metadatos del registro completo
id |
CONICETDig_583bf01eb78d3ae5b2e416f4d6099a57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/114217 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adapting distributed evolutionary algorithms to heterogeneous hardwareSalto, CarolinaAlba, Enriquedistributed computingheterogeneityparallel algorithmsmetaheuristicshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases.Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alba, Enrique. Universidad de Málaga; EspañaSpringer2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/114217Salto, Carolina; Alba, Enrique; Adapting distributed evolutionary algorithms to heterogeneous hardware; Springer; Transactions on Computational Collective Intelligence; 19; 12-2015; 103-1252190-9288CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-662-49017-4_7info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-49017-4_7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:45Zoai:ri.conicet.gov.ar:11336/114217instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:45.443CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
title |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
spellingShingle |
Adapting distributed evolutionary algorithms to heterogeneous hardware Salto, Carolina distributed computing heterogeneity parallel algorithms metaheuristics |
title_short |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
title_full |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
title_fullStr |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
title_full_unstemmed |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
title_sort |
Adapting distributed evolutionary algorithms to heterogeneous hardware |
dc.creator.none.fl_str_mv |
Salto, Carolina Alba, Enrique |
author |
Salto, Carolina |
author_facet |
Salto, Carolina Alba, Enrique |
author_role |
author |
author2 |
Alba, Enrique |
author2_role |
author |
dc.subject.none.fl_str_mv |
distributed computing heterogeneity parallel algorithms metaheuristics |
topic |
distributed computing heterogeneity parallel algorithms metaheuristics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases. Fil: Salto, Carolina. Universidad Nacional de la Pampa. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Alba, Enrique. Universidad de Málaga; España |
description |
Distributed computing environments are nowadays composed of many heterogeneous computers able to work cooperatively. Despite this, the most of the work in parallel metaheuristics assumes a homogeneous hardware as the underlying platform. In this work we provide a methodology that enables a distributed genetic algorithm to be customized for higher efficiency on any available hardware resources with different computing power, all of them collaborating to solve the same problem. We analyze the impact of heterogeneity in the resulting performance of a parallel metaheuristic and also its efficiency in time. Our conclusion is that the solution quality is comparable to that achieved by using a theoretically faster homogeneous platform, the traditional environment to execute this kind of algorithms, but an interesting finding is that those solutions are found with a lower numerical effort and even in lower running times in some cases. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/114217 Salto, Carolina; Alba, Enrique; Adapting distributed evolutionary algorithms to heterogeneous hardware; Springer; Transactions on Computational Collective Intelligence; 19; 12-2015; 103-125 2190-9288 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/114217 |
identifier_str_mv |
Salto, Carolina; Alba, Enrique; Adapting distributed evolutionary algorithms to heterogeneous hardware; Springer; Transactions on Computational Collective Intelligence; 19; 12-2015; 103-125 2190-9288 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/chapter/10.1007/978-3-662-49017-4_7 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-49017-4_7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269364282195968 |
score |
13.13397 |