Genetic algorithms for topical web search: A study of different mutation rates
- Autores
- Cecchini, Rocío L.; Lorenzetti, Carlos M.; Maguitman, Ana Gabriela; Brignole, Nélida B.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
Information Search and Retrieval
Search process
Query processing
topical web search
genetic algorithms
query formulation
query optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23579
Ver los metadatos del registro completo
id |
SEDICI_01279a7251ace3d61d707466d3851e80 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23579 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Genetic algorithms for topical web search: A study of different mutation ratesCecchini, Rocío L.Lorenzetti, Carlos M.Maguitman, Ana GabrielaBrignole, Nélida B.Ciencias InformáticasInformáticaInformation Search and RetrievalSearch processQuery processingtopical web searchgenetic algorithmsquery formulationquery optimizationHarvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1585-1596http://sedici.unlp.edu.ar/handle/10915/23579enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:18Zoai:sedici.unlp.edu.ar:10915/23579Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:19.548SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Genetic algorithms for topical web search: A study of different mutation rates |
title |
Genetic algorithms for topical web search: A study of different mutation rates |
spellingShingle |
Genetic algorithms for topical web search: A study of different mutation rates Cecchini, Rocío L. Ciencias Informáticas Informática Information Search and Retrieval Search process Query processing topical web search genetic algorithms query formulation query optimization |
title_short |
Genetic algorithms for topical web search: A study of different mutation rates |
title_full |
Genetic algorithms for topical web search: A study of different mutation rates |
title_fullStr |
Genetic algorithms for topical web search: A study of different mutation rates |
title_full_unstemmed |
Genetic algorithms for topical web search: A study of different mutation rates |
title_sort |
Genetic algorithms for topical web search: A study of different mutation rates |
dc.creator.none.fl_str_mv |
Cecchini, Rocío L. Lorenzetti, Carlos M. Maguitman, Ana Gabriela Brignole, Nélida B. |
author |
Cecchini, Rocío L. |
author_facet |
Cecchini, Rocío L. Lorenzetti, Carlos M. Maguitman, Ana Gabriela Brignole, Nélida B. |
author_role |
author |
author2 |
Lorenzetti, Carlos M. Maguitman, Ana Gabriela Brignole, Nélida B. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática Information Search and Retrieval Search process Query processing topical web search genetic algorithms query formulation query optimization |
topic |
Ciencias Informáticas Informática Information Search and Retrieval Search process Query processing topical web search genetic algorithms query formulation query optimization |
dc.description.none.fl_txt_mv |
Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Harvesting topical content is a process that can be done by formulating topic-relevant queries and submitting them to a search engine. The quality of the material collected through this process is highly dependant on the vocabulary used to generate the search queries. In this scenario, selecting good query terms can be seen as an optimization problem where the objective function to be optimized is based on the effectiveness of a query to retrieve relevant material. Three characteristics of this optimization problem are (1) the high-dimensionality of the search space, where candidate solutions are queries and each term corresponds to a different dimension, (2) the existence of acceptable suboptimal solutions, and (3) the possibility of finding multiple solutions. This paper describes optimization techniques based on Genetic Algorithms to evolve “good query terms” in the context of a given topic. We discuss the use of a mutation pool to allow the generation of queries with novel terms, and study the effect of different mutation rates on the exploration of query-space. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23579 |
url |
http://sedici.unlp.edu.ar/handle/10915/23579 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1585-1596 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260121971851264 |
score |
13.13397 |