Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators
- Autores
- Messina, Francisco; Cernuschi Frias, Bruno
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling [1] presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement.
Fil: Messina, Francisco. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
41 JAIIO Simposio Argentino de Tecnología (AST 2012)
Buenos Aires
Argentina
Sociedad Argentina de Informática
Universidad Nacional de La Plata - Materia
-
INDEPENDENT COMPONENT ANALYSIS
ROBUST ALGORITHMS
ADAPTIVE ALGORITHMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/157553
Ver los metadatos del registro completo
id |
CONICETDig_adadce685879769b1db2ae419b2b0bbd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/157553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimatorsMessina, FranciscoCernuschi Frias, BrunoINDEPENDENT COMPONENT ANALYSISROBUST ALGORITHMSADAPTIVE ALGORITHMShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling [1] presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement.Fil: Messina, Francisco. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; ArgentinaFil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina41 JAIIO Simposio Argentino de Tecnología (AST 2012)Buenos AiresArgentinaSociedad Argentina de InformáticaUniversidad Nacional de La PlataUniversidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/157553Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators; 41 JAIIO Simposio Argentino de Tecnología (AST 2012); Buenos Aires; Argentina; 2012; 240-2511850-2806CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/21_AST_2012.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:02Zoai:ri.conicet.gov.ar:11336/157553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:02.84CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
title |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
spellingShingle |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators Messina, Francisco INDEPENDENT COMPONENT ANALYSIS ROBUST ALGORITHMS ADAPTIVE ALGORITHMS |
title_short |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
title_full |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
title_fullStr |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
title_full_unstemmed |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
title_sort |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators |
dc.creator.none.fl_str_mv |
Messina, Francisco Cernuschi Frias, Bruno |
author |
Messina, Francisco |
author_facet |
Messina, Francisco Cernuschi Frias, Bruno |
author_role |
author |
author2 |
Cernuschi Frias, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
INDEPENDENT COMPONENT ANALYSIS ROBUST ALGORITHMS ADAPTIVE ALGORITHMS |
topic |
INDEPENDENT COMPONENT ANALYSIS ROBUST ALGORITHMS ADAPTIVE ALGORITHMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling [1] presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement. Fil: Messina, Francisco. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina 41 JAIIO Simposio Argentino de Tecnología (AST 2012) Buenos Aires Argentina Sociedad Argentina de Informática Universidad Nacional de La Plata |
description |
All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling [1] presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/157553 Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators; 41 JAIIO Simposio Argentino de Tecnología (AST 2012); Buenos Aires; Argentina; 2012; 240-251 1850-2806 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/157553 |
identifier_str_mv |
Robust parallel fast-ICA algorithms using batch and adaptive MMSE estimators; 41 JAIIO Simposio Argentino de Tecnología (AST 2012); Buenos Aires; Argentina; 2012; 240-251 1850-2806 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/21_AST_2012.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación |
publisher.none.fl_str_mv |
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613624425873408 |
score |
13.070432 |