A new strategy for adapting the mutation probability in genetic algorithms

Autores
Stark, Natalia; Minetti, Gabriela F.; Salto, Carolina
Año de publicación
2012
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Adapting the Mutation Probability
Genetic Algorithms
Algorithms
Intelligent agents
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23593

id SEDICI_6ded7f8cb2538b02a1774dda526fdc21
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23593
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A new strategy for adapting the mutation probability in genetic algorithmsStark, NataliaMinetti, Gabriela F.Salto, CarolinaCiencias InformáticasAdapting the Mutation ProbabilityGenetic AlgorithmsAlgorithmsIntelligent agentsTraditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23593enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:31Zoai:sedici.unlp.edu.ar:10915/23593Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:31.564SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A new strategy for adapting the mutation probability in genetic algorithms
title A new strategy for adapting the mutation probability in genetic algorithms
spellingShingle A new strategy for adapting the mutation probability in genetic algorithms
Stark, Natalia
Ciencias Informáticas
Adapting the Mutation Probability
Genetic Algorithms
Algorithms
Intelligent agents
title_short A new strategy for adapting the mutation probability in genetic algorithms
title_full A new strategy for adapting the mutation probability in genetic algorithms
title_fullStr A new strategy for adapting the mutation probability in genetic algorithms
title_full_unstemmed A new strategy for adapting the mutation probability in genetic algorithms
title_sort A new strategy for adapting the mutation probability in genetic algorithms
dc.creator.none.fl_str_mv Stark, Natalia
Minetti, Gabriela F.
Salto, Carolina
author Stark, Natalia
author_facet Stark, Natalia
Minetti, Gabriela F.
Salto, Carolina
author_role author
author2 Minetti, Gabriela F.
Salto, Carolina
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Adapting the Mutation Probability
Genetic Algorithms
Algorithms
Intelligent agents
topic Ciencias Informáticas
Adapting the Mutation Probability
Genetic Algorithms
Algorithms
Intelligent agents
dc.description.none.fl_txt_mv Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23593
url http://sedici.unlp.edu.ar/handle/10915/23593
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615814398869504
score 13.070432