A new strategy for adapting the mutation probability in genetic algorithms
- Autores
- Stark, Natalia; Minetti, Gabriela F.; Salto, Carolina
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.
Eje: Workshop Agentes y sistemas inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Adapting the Mutation Probability
Genetic Algorithms
Algorithms
Intelligent agents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23593
Ver los metadatos del registro completo
id |
SEDICI_6ded7f8cb2538b02a1774dda526fdc21 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23593 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A new strategy for adapting the mutation probability in genetic algorithmsStark, NataliaMinetti, Gabriela F.Salto, CarolinaCiencias InformáticasAdapting the Mutation ProbabilityGenetic AlgorithmsAlgorithmsIntelligent agentsTraditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates.Eje: Workshop Agentes y sistemas inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2012-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23593enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:31Zoai:sedici.unlp.edu.ar:10915/23593Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:31.564SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A new strategy for adapting the mutation probability in genetic algorithms |
title |
A new strategy for adapting the mutation probability in genetic algorithms |
spellingShingle |
A new strategy for adapting the mutation probability in genetic algorithms Stark, Natalia Ciencias Informáticas Adapting the Mutation Probability Genetic Algorithms Algorithms Intelligent agents |
title_short |
A new strategy for adapting the mutation probability in genetic algorithms |
title_full |
A new strategy for adapting the mutation probability in genetic algorithms |
title_fullStr |
A new strategy for adapting the mutation probability in genetic algorithms |
title_full_unstemmed |
A new strategy for adapting the mutation probability in genetic algorithms |
title_sort |
A new strategy for adapting the mutation probability in genetic algorithms |
dc.creator.none.fl_str_mv |
Stark, Natalia Minetti, Gabriela F. Salto, Carolina |
author |
Stark, Natalia |
author_facet |
Stark, Natalia Minetti, Gabriela F. Salto, Carolina |
author_role |
author |
author2 |
Minetti, Gabriela F. Salto, Carolina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Adapting the Mutation Probability Genetic Algorithms Algorithms Intelligent agents |
topic |
Ciencias Informáticas Adapting the Mutation Probability Genetic Algorithms Algorithms Intelligent agents |
dc.description.none.fl_txt_mv |
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates. Eje: Workshop Agentes y sistemas inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Traditionally in Genetic Algorithms, the mutation probability parameter maintains a constant value during the search. However, an important difficulty is to determine a priori which probability value is the best suited for a given problem. Besides, there is a growing demand for up-to-date optimization software, applicable by a non-specialist within an industrial development environment. These issues encourage us to propose an adaptive evolutionary algorithm that includes a mechanism to modify the mutation probability without external control. This process of dynamic adaptation happens while the algorithm is searching for the problem solution. This eliminates a very expensive computational phase related to the pre-tuning of the algorithmic parameters. We compare the performance of our adaptive proposal against traditional genetic algorithms with fixed parameter values in a numerical way. The empirical comparisons, over a range of NK-Landscapes instances, show that a genetic algorithm incorporating a strategy for adapting the mutation probability outperforms the same algorithm using fixed mutation rates. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23593 |
url |
http://sedici.unlp.edu.ar/handle/10915/23593 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615814398869504 |
score |
13.070432 |