Dimensión fractal de autocorrelación cuadrática en imágenes digitales

Autores
Silvetti, Andrea; Delrieux, Claudio
Año de publicación
2007
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El método de autocorrelación cuadrática es una variante para computar coeficiente de Hurst, el cual se utiliza para medir la dimensión fractal local en imágenes digitales. Usualmente, para computar dicho coeficiente, se toma una ventana cuadrada centrada en el pixel p, cuya dimensión fractal local se desea medir, y se evalúa la variancia de la luminancia ΔV entre dicho pixel y los pixels que están a una distancia r de p. La pendiente de la regresión lineal de dicha variancia en función de r en un espacio logarítmico es una estimación del coeficiente de autocorrelación H local en p, y la dimensión fractal local es 3 − H. La autocorrelación cuadrática, en cambio, evalúa la variancia de luminancia entre todos los pixels dentro de la ventana para una distancia dada. Por lo tanto, la regresión de la variancia se realiza en función del área de dicha ventana. En trabajos anteriores mostramos que dicha evaluación es mucho más precisa y estable, pero con un costo computacional mucho mayor. En este trabajo proponemos una mejora al método de autocorrelación cuadrática, la cual no solo reduce el costo computacional a menos de la mitad, sino que mejora experimentalmente los resultados obtenidos. Aún trabajando con ventanas pequeñas, se obtienen estimaciones más exactas y precisas con respecto a los métodos tradicionales con grandes ventanas, por lo cual los resultados son altamente satisfactorios. Además, mostramos que las propiedades de invariancia a transformaciones afines de geometría y luminancia del método son superiores al método tradicional. Finalmente, se muestran algunos ejemplos del uso de nuestro método en segmentación de características en imágenes médicas y de censado remoto.
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
Fractals
procesamiento de imágenes
dimensión fractal
Image processing software
coeficiente de Hurst
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23278

id SEDICI_80b34d49406dcb5b71fb669bd5eff01a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23278
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dimensión fractal de autocorrelación cuadrática en imágenes digitalesSilvetti, AndreaDelrieux, ClaudioCiencias InformáticasInformáticaFractalsprocesamiento de imágenesdimensión fractalImage processing softwarecoeficiente de HurstEl método de autocorrelación cuadrática es una variante para computar coeficiente de Hurst, el cual se utiliza para medir la dimensión fractal local en imágenes digitales. Usualmente, para computar dicho coeficiente, se toma una ventana cuadrada centrada en el pixel p, cuya dimensión fractal local se desea medir, y se evalúa la variancia de la luminancia ΔV entre dicho pixel y los pixels que están a una distancia r de p. La pendiente de la regresión lineal de dicha variancia en función de r en un espacio logarítmico es una estimación del coeficiente de autocorrelación H local en p, y la dimensión fractal local es 3 − H. La autocorrelación cuadrática, en cambio, evalúa la variancia de luminancia entre todos los pixels dentro de la ventana para una distancia dada. Por lo tanto, la regresión de la variancia se realiza en función del área de dicha ventana. En trabajos anteriores mostramos que dicha evaluación es mucho más precisa y estable, pero con un costo computacional mucho mayor. En este trabajo proponemos una mejora al método de autocorrelación cuadrática, la cual no solo reduce el costo computacional a menos de la mitad, sino que mejora experimentalmente los resultados obtenidos. Aún trabajando con ventanas pequeñas, se obtienen estimaciones más exactas y precisas con respecto a los métodos tradicionales con grandes ventanas, por lo cual los resultados son altamente satisfactorios. Además, mostramos que las propiedades de invariancia a transformaciones afines de geometría y luminancia del método son superiores al método tradicional. Finalmente, se muestran algunos ejemplos del uso de nuestro método en segmentación de características en imágenes médicas y de censado remoto.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1678-1690http://sedici.unlp.edu.ar/handle/10915/23278spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:28:11Zoai:sedici.unlp.edu.ar:10915/23278Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:28:12.242SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dimensión fractal de autocorrelación cuadrática en imágenes digitales
title Dimensión fractal de autocorrelación cuadrática en imágenes digitales
spellingShingle Dimensión fractal de autocorrelación cuadrática en imágenes digitales
Silvetti, Andrea
Ciencias Informáticas
Informática
Fractals
procesamiento de imágenes
dimensión fractal
Image processing software
coeficiente de Hurst
title_short Dimensión fractal de autocorrelación cuadrática en imágenes digitales
title_full Dimensión fractal de autocorrelación cuadrática en imágenes digitales
title_fullStr Dimensión fractal de autocorrelación cuadrática en imágenes digitales
title_full_unstemmed Dimensión fractal de autocorrelación cuadrática en imágenes digitales
title_sort Dimensión fractal de autocorrelación cuadrática en imágenes digitales
dc.creator.none.fl_str_mv Silvetti, Andrea
Delrieux, Claudio
author Silvetti, Andrea
author_facet Silvetti, Andrea
Delrieux, Claudio
author_role author
author2 Delrieux, Claudio
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
Fractals
procesamiento de imágenes
dimensión fractal
Image processing software
coeficiente de Hurst
topic Ciencias Informáticas
Informática
Fractals
procesamiento de imágenes
dimensión fractal
Image processing software
coeficiente de Hurst
dc.description.none.fl_txt_mv El método de autocorrelación cuadrática es una variante para computar coeficiente de Hurst, el cual se utiliza para medir la dimensión fractal local en imágenes digitales. Usualmente, para computar dicho coeficiente, se toma una ventana cuadrada centrada en el pixel p, cuya dimensión fractal local se desea medir, y se evalúa la variancia de la luminancia ΔV entre dicho pixel y los pixels que están a una distancia r de p. La pendiente de la regresión lineal de dicha variancia en función de r en un espacio logarítmico es una estimación del coeficiente de autocorrelación H local en p, y la dimensión fractal local es 3 − H. La autocorrelación cuadrática, en cambio, evalúa la variancia de luminancia entre todos los pixels dentro de la ventana para una distancia dada. Por lo tanto, la regresión de la variancia se realiza en función del área de dicha ventana. En trabajos anteriores mostramos que dicha evaluación es mucho más precisa y estable, pero con un costo computacional mucho mayor. En este trabajo proponemos una mejora al método de autocorrelación cuadrática, la cual no solo reduce el costo computacional a menos de la mitad, sino que mejora experimentalmente los resultados obtenidos. Aún trabajando con ventanas pequeñas, se obtienen estimaciones más exactas y precisas con respecto a los métodos tradicionales con grandes ventanas, por lo cual los resultados son altamente satisfactorios. Además, mostramos que las propiedades de invariancia a transformaciones afines de geometría y luminancia del método son superiores al método tradicional. Finalmente, se muestran algunos ejemplos del uso de nuestro método en segmentación de características en imágenes médicas y de censado remoto.
Red de Universidades con Carreras en Informática (RedUNCI)
description El método de autocorrelación cuadrática es una variante para computar coeficiente de Hurst, el cual se utiliza para medir la dimensión fractal local en imágenes digitales. Usualmente, para computar dicho coeficiente, se toma una ventana cuadrada centrada en el pixel p, cuya dimensión fractal local se desea medir, y se evalúa la variancia de la luminancia ΔV entre dicho pixel y los pixels que están a una distancia r de p. La pendiente de la regresión lineal de dicha variancia en función de r en un espacio logarítmico es una estimación del coeficiente de autocorrelación H local en p, y la dimensión fractal local es 3 − H. La autocorrelación cuadrática, en cambio, evalúa la variancia de luminancia entre todos los pixels dentro de la ventana para una distancia dada. Por lo tanto, la regresión de la variancia se realiza en función del área de dicha ventana. En trabajos anteriores mostramos que dicha evaluación es mucho más precisa y estable, pero con un costo computacional mucho mayor. En este trabajo proponemos una mejora al método de autocorrelación cuadrática, la cual no solo reduce el costo computacional a menos de la mitad, sino que mejora experimentalmente los resultados obtenidos. Aún trabajando con ventanas pequeñas, se obtienen estimaciones más exactas y precisas con respecto a los métodos tradicionales con grandes ventanas, por lo cual los resultados son altamente satisfactorios. Además, mostramos que las propiedades de invariancia a transformaciones afines de geometría y luminancia del método son superiores al método tradicional. Finalmente, se muestran algunos ejemplos del uso de nuestro método en segmentación de características en imágenes médicas y de censado remoto.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23278
url http://sedici.unlp.edu.ar/handle/10915/23278
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1678-1690
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260120619188224
score 13.13397