Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
- Autores
- Pérez Bello, Dinibel; Natali, María Paula; Meza, Amalia Margarita
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.
Facultad de Ciencias Astronómicas y Geofísicas
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría - Materia
-
Astronomía
vTEC
Space weather
Neural network
Forecasting - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/142868
Ver los metadatos del registro completo
id |
SEDICI_7b55f35cd109295dc4fa23c93bf91d84 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/142868 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecastingPérez Bello, DinibelNatali, María PaulaMeza, Amalia MargaritaAstronomíavTECSpace weatherNeural networkForecastingAccurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.Facultad de Ciencias Astronómicas y GeofísicasLaboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf8411-8422http://sedici.unlp.edu.ar/handle/10915/142868enginfo:eu-repo/semantics/altIdentifier/issn/0941-0643info:eu-repo/semantics/altIdentifier/issn/1433-3058info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-019-04528-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:31Zoai:sedici.unlp.edu.ar:10915/142868Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:32.168SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
title |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
spellingShingle |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting Pérez Bello, Dinibel Astronomía vTEC Space weather Neural network Forecasting |
title_short |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
title_full |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
title_fullStr |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
title_full_unstemmed |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
title_sort |
Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting |
dc.creator.none.fl_str_mv |
Pérez Bello, Dinibel Natali, María Paula Meza, Amalia Margarita |
author |
Pérez Bello, Dinibel |
author_facet |
Pérez Bello, Dinibel Natali, María Paula Meza, Amalia Margarita |
author_role |
author |
author2 |
Natali, María Paula Meza, Amalia Margarita |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Astronomía vTEC Space weather Neural network Forecasting |
topic |
Astronomía vTEC Space weather Neural network Forecasting |
dc.description.none.fl_txt_mv |
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used. Facultad de Ciencias Astronómicas y Geofísicas Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría |
description |
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/142868 |
url |
http://sedici.unlp.edu.ar/handle/10915/142868 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0941-0643 info:eu-repo/semantics/altIdentifier/issn/1433-3058 info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-019-04528-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 8411-8422 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846783506718392320 |
score |
12.982451 |