Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting

Autores
Pérez Bello, Dinibel; Natali, María Paula; Meza, Amalia Margarita
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.
Facultad de Ciencias Astronómicas y Geofísicas
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría
Materia
Astronomía
vTEC
Space weather
Neural network
Forecasting
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/142868

id SEDICI_7b55f35cd109295dc4fa23c93bf91d84
oai_identifier_str oai:sedici.unlp.edu.ar:10915/142868
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecastingPérez Bello, DinibelNatali, María PaulaMeza, Amalia MargaritaAstronomíavTECSpace weatherNeural networkForecastingAccurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.Facultad de Ciencias Astronómicas y GeofísicasLaboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría2019-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf8411-8422http://sedici.unlp.edu.ar/handle/10915/142868enginfo:eu-repo/semantics/altIdentifier/issn/0941-0643info:eu-repo/semantics/altIdentifier/issn/1433-3058info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-019-04528-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:31Zoai:sedici.unlp.edu.ar:10915/142868Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:32.168SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
title Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
spellingShingle Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
Pérez Bello, Dinibel
Astronomía
vTEC
Space weather
Neural network
Forecasting
title_short Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
title_full Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
title_fullStr Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
title_full_unstemmed Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
title_sort Comparison of adaptive neuro-fuzzy inference system and recurrent neural network in vertical total electron content forecasting
dc.creator.none.fl_str_mv Pérez Bello, Dinibel
Natali, María Paula
Meza, Amalia Margarita
author Pérez Bello, Dinibel
author_facet Pérez Bello, Dinibel
Natali, María Paula
Meza, Amalia Margarita
author_role author
author2 Natali, María Paula
Meza, Amalia Margarita
author2_role author
author
dc.subject.none.fl_str_mv Astronomía
vTEC
Space weather
Neural network
Forecasting
topic Astronomía
vTEC
Space weather
Neural network
Forecasting
dc.description.none.fl_txt_mv Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.
Facultad de Ciencias Astronómicas y Geofísicas
Laboratorio de Meteorología espacial, Atmósfera terrestre, Geodesia, Geodinámica, diseño de Instrumental y Astrometría
description Accurate prediction of total electron content (TEC) is important for monitoring the behavior of the ionosphere and indeed a magnitude of interest to understand the properties and behavior of the Sun–Earth System. The conditions of this medium have a direct impact on a growing variety of critical technological infrastructure. This work presents a comparison between two different artificial neural networks (ANNs): an adaptive neuro-fuzzy inference system and nonlinear autoregressive neural network (NAR-NN) applied to TEC. Both ANNs where tested on four different geomagnetic locations on 4 1-week periods having a variety of geomagnetic disturbance levels. The effect of using different training period lengths and the system response for 60 and 30 min sampling rate TEC time series was investigated. NAR-NN shows a slightly better performance, being the higher difference during the greater perturbations. There is also a better response when sampling rates of 30 min are used.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/142868
url http://sedici.unlp.edu.ar/handle/10915/142868
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0941-0643
info:eu-repo/semantics/altIdentifier/issn/1433-3058
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-019-04528-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
8411-8422
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783506718392320
score 12.982451