Boosting total electron content forecasting based on deep learning toward an operational service

Autores
Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; Asamoah, Eric N.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia
Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia
Materia
Global TEC forecasting
Deep learning
Incremental learning
Research to operation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/270791

id CONICETDig_bb7f11f03d41abc59253a7fc202f2e84
oai_identifier_str oai:ri.conicet.gov.ar:11336/270791
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boosting total electron content forecasting based on deep learning toward an operational serviceMolina, Maria GracielaNamour, Jorge HabibCesaroni, ClaudioSpogli, LucaArgüelles, Noelia BeatrizAsamoah, Eric N.Global TEC forecastingDeep learningIncremental learningResearch to operationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; ItaliaFil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; ItaliaElsevier2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270791Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-141364-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2025.106427info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:04:04Zoai:ri.conicet.gov.ar:11336/270791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:04:05.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boosting total electron content forecasting based on deep learning toward an operational service
title Boosting total electron content forecasting based on deep learning toward an operational service
spellingShingle Boosting total electron content forecasting based on deep learning toward an operational service
Molina, Maria Graciela
Global TEC forecasting
Deep learning
Incremental learning
Research to operation
title_short Boosting total electron content forecasting based on deep learning toward an operational service
title_full Boosting total electron content forecasting based on deep learning toward an operational service
title_fullStr Boosting total electron content forecasting based on deep learning toward an operational service
title_full_unstemmed Boosting total electron content forecasting based on deep learning toward an operational service
title_sort Boosting total electron content forecasting based on deep learning toward an operational service
dc.creator.none.fl_str_mv Molina, Maria Graciela
Namour, Jorge Habib
Cesaroni, Claudio
Spogli, Luca
Argüelles, Noelia Beatriz
Asamoah, Eric N.
author Molina, Maria Graciela
author_facet Molina, Maria Graciela
Namour, Jorge Habib
Cesaroni, Claudio
Spogli, Luca
Argüelles, Noelia Beatriz
Asamoah, Eric N.
author_role author
author2 Namour, Jorge Habib
Cesaroni, Claudio
Spogli, Luca
Argüelles, Noelia Beatriz
Asamoah, Eric N.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Global TEC forecasting
Deep learning
Incremental learning
Research to operation
topic Global TEC forecasting
Deep learning
Incremental learning
Research to operation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia
Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia
description We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/270791
Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14
1364-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/270791
identifier_str_mv Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14
1364-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2025.106427
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782387146457088
score 12.982451