Boosting total electron content forecasting based on deep learning toward an operational service
- Autores
- Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; Asamoah, Eric N.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.
Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia
Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia
Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina
Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia - Materia
-
Global TEC forecasting
Deep learning
Incremental learning
Research to operation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/270791
Ver los metadatos del registro completo
| id |
CONICETDig_bb7f11f03d41abc59253a7fc202f2e84 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/270791 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Boosting total electron content forecasting based on deep learning toward an operational serviceMolina, Maria GracielaNamour, Jorge HabibCesaroni, ClaudioSpogli, LucaArgüelles, Noelia BeatrizAsamoah, Eric N.Global TEC forecastingDeep learningIncremental learningResearch to operationhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works.Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; ItaliaFil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; ItaliaFil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; ArgentinaFil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; ItaliaElsevier2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270791Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-141364-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2025.106427info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:04:04Zoai:ri.conicet.gov.ar:11336/270791instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:04:05.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Boosting total electron content forecasting based on deep learning toward an operational service |
| title |
Boosting total electron content forecasting based on deep learning toward an operational service |
| spellingShingle |
Boosting total electron content forecasting based on deep learning toward an operational service Molina, Maria Graciela Global TEC forecasting Deep learning Incremental learning Research to operation |
| title_short |
Boosting total electron content forecasting based on deep learning toward an operational service |
| title_full |
Boosting total electron content forecasting based on deep learning toward an operational service |
| title_fullStr |
Boosting total electron content forecasting based on deep learning toward an operational service |
| title_full_unstemmed |
Boosting total electron content forecasting based on deep learning toward an operational service |
| title_sort |
Boosting total electron content forecasting based on deep learning toward an operational service |
| dc.creator.none.fl_str_mv |
Molina, Maria Graciela Namour, Jorge Habib Cesaroni, Claudio Spogli, Luca Argüelles, Noelia Beatriz Asamoah, Eric N. |
| author |
Molina, Maria Graciela |
| author_facet |
Molina, Maria Graciela Namour, Jorge Habib Cesaroni, Claudio Spogli, Luca Argüelles, Noelia Beatriz Asamoah, Eric N. |
| author_role |
author |
| author2 |
Namour, Jorge Habib Cesaroni, Claudio Spogli, Luca Argüelles, Noelia Beatriz Asamoah, Eric N. |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Global TEC forecasting Deep learning Incremental learning Research to operation |
| topic |
Global TEC forecasting Deep learning Incremental learning Research to operation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works. Fil: Molina, Maria Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia Fil: Namour, Jorge Habib. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina Fil: Cesaroni, Claudio. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina. Istituto Nazionale di Geofisica e Vulcanologia; Italia Fil: Spogli, Luca. Istituto Nazionale di Geofisica e Vulcanologia; Italia. SpacEarth Technology; Italia Fil: Argüelles, Noelia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología; Argentina Fil: Asamoah, Eric N.. Istituto Nazionale di Geofisica e Vulcanologia; Italia. University of Salento; Italia |
| description |
We present a prediction model based on deep learning able to forecast ionospheric Total Electron Content at global level 24 h in advance. It has been conceived to operate under different space weather scenarios and in an operational framework. Three different deep learning (DL) techniques have been compared: Long Short Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). The modelling approach inherits by and extends what has been proposed by Cesaroni and co-authors (2020a). Specifically, the machine learning-based approach here reported is conceived to improve the first step of Cesaroni et al. (2020a), in which TEC is forecasted on 18 selected grid points of Global Ionospheric Maps (GIMs) using the geomagnetic global index Kp index as the external input.CNN models provide better predictive capabilities than LSTM and GRU, and it has more robust behaviour under different space weather conditions. We also show how all the proposed models outperform the two naive models: the so-called “frozen ionosphere” or recurrence model and a 27 days averaged model.The novelty of our approach is the operational capability based on an incremental learning method to prevent the aging of the trained models by updating the weights with little computational effort adding new information immediately after the 24-h forecasting. The improvement changed from RMSE of ∼6.5 TECu to ∼2.5 TECu.We also discuss limitations and the use of other space weather inputs (e.g. solar proxies, other geomagnetic indexes, etc) and the use of complementary data science techniques (e.g. data preparation, hyperparameter tuning, better data resolution, etc.) to enhance the forecasting in future works. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/270791 Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14 1364-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/270791 |
| identifier_str_mv |
Molina, Maria Graciela; Namour, Jorge Habib; Cesaroni, Claudio; Spogli, Luca; Argüelles, Noelia Beatriz; et al.; Boosting total electron content forecasting based on deep learning toward an operational service; Elsevier; Journal of Atmospheric and Solar-Terrestrial Physics; 268; 3-2025; 1-14 1364-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1364682625000112 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jastp.2025.106427 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782387146457088 |
| score |
12.982451 |