Effective prover for minimal inconsistency logic
- Autores
- Neto, Adolfo Gustavo Serra Seca; Finger, Marcelo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert Systems
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Expert system tools and techniques
mbC logic
paraconsistent logic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23968
Ver los metadatos del registro completo
id |
SEDICI_74d600ddcaedc01fa0793e496d108de7 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23968 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Effective prover for minimal inconsistency logicNeto, Adolfo Gustavo Serra SecaFinger, MarceloCiencias InformáticasExpert system tools and techniquesmbC logicparaconsistent logicIn this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert SystemsRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23968enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:37:13Zoai:sedici.unlp.edu.ar:10915/23968Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:37:14.119SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Effective prover for minimal inconsistency logic |
title |
Effective prover for minimal inconsistency logic |
spellingShingle |
Effective prover for minimal inconsistency logic Neto, Adolfo Gustavo Serra Seca Ciencias Informáticas Expert system tools and techniques mbC logic paraconsistent logic |
title_short |
Effective prover for minimal inconsistency logic |
title_full |
Effective prover for minimal inconsistency logic |
title_fullStr |
Effective prover for minimal inconsistency logic |
title_full_unstemmed |
Effective prover for minimal inconsistency logic |
title_sort |
Effective prover for minimal inconsistency logic |
dc.creator.none.fl_str_mv |
Neto, Adolfo Gustavo Serra Seca Finger, Marcelo |
author |
Neto, Adolfo Gustavo Serra Seca |
author_facet |
Neto, Adolfo Gustavo Serra Seca Finger, Marcelo |
author_role |
author |
author2 |
Finger, Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Expert system tools and techniques mbC logic paraconsistent logic |
topic |
Ciencias Informáticas Expert system tools and techniques mbC logic paraconsistent logic |
dc.description.none.fl_txt_mv |
In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families. IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert Systems Red de Universidades con Carreras en Informática (RedUNCI) |
description |
In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23968 |
url |
http://sedici.unlp.edu.ar/handle/10915/23968 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846782832972660736 |
score |
12.982451 |