Effective prover for minimal inconsistency logic

Autores
Neto, Adolfo Gustavo Serra Seca; Finger, Marcelo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert Systems
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Expert system tools and techniques
mbC logic
paraconsistent logic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23968

id SEDICI_74d600ddcaedc01fa0793e496d108de7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23968
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Effective prover for minimal inconsistency logicNeto, Adolfo Gustavo Serra SecaFinger, MarceloCiencias InformáticasExpert system tools and techniquesmbC logicparaconsistent logicIn this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert SystemsRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23968enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:37:13Zoai:sedici.unlp.edu.ar:10915/23968Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:37:14.119SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Effective prover for minimal inconsistency logic
title Effective prover for minimal inconsistency logic
spellingShingle Effective prover for minimal inconsistency logic
Neto, Adolfo Gustavo Serra Seca
Ciencias Informáticas
Expert system tools and techniques
mbC logic
paraconsistent logic
title_short Effective prover for minimal inconsistency logic
title_full Effective prover for minimal inconsistency logic
title_fullStr Effective prover for minimal inconsistency logic
title_full_unstemmed Effective prover for minimal inconsistency logic
title_sort Effective prover for minimal inconsistency logic
dc.creator.none.fl_str_mv Neto, Adolfo Gustavo Serra Seca
Finger, Marcelo
author Neto, Adolfo Gustavo Serra Seca
author_facet Neto, Adolfo Gustavo Serra Seca
Finger, Marcelo
author_role author
author2 Finger, Marcelo
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Expert system tools and techniques
mbC logic
paraconsistent logic
topic Ciencias Informáticas
Expert system tools and techniques
mbC logic
paraconsistent logic
dc.description.none.fl_txt_mv In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Expert Systems
Red de Universidades con Carreras en Informática (RedUNCI)
description In this paper we present an e ective prover for mbC, a minimal inconsistency logic. The mbC logic is a paraconsistent logic of the family of logics of formal inconsistency. Paraconsistent logics have several philosophical motivations as well as many applications in Arti cial Intelligence such as in belief revision, inconsistent knowledge reasoning, and logic programming. We have implemented the KEMS prover for mbC, a theorem prover based on the KE tableau method for mbC. We show here that the proof system on which this prover is based is sound, complete and analytic. To evaluate the KEMS prover for mbC, we devised four families of mbC-valid formulas and we present here the rst benchmark results using these families.
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23968
url http://sedici.unlp.edu.ar/handle/10915/23968
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782832972660736
score 12.982451