Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

Autores
Cura Costa, Emanuel; Otsuki, Leo; Rodrigo Albors, Aida; Tanaka, Elly M.; Chara, Osvaldo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Instituto de Física de Líquidos y Sistemas Biológicos
Materia
Biología
Spinal cord regeneration
Axolotls
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/129987

id SEDICI_68d48dad15a18407a7268468344dea60
oai_identifier_str oai:sedici.unlp.edu.ar:10915/129987
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regenerationCura Costa, EmanuelOtsuki, LeoRodrigo Albors, AidaTanaka, Elly M.Chara, OsvaldoBiologíaSpinal cord regenerationAxolotlsAxolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.Instituto de Física de Líquidos y Sistemas Biológicos2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/129987enginfo:eu-repo/semantics/altIdentifier/issn/2050-084Xinfo:eu-repo/semantics/altIdentifier/doi/10.7554/ eLife.55665info:eu-repo/semantics/reference/hdl/10915/129991info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:41Zoai:sedici.unlp.edu.ar:10915/129987Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:42.065SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
spellingShingle Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
Cura Costa, Emanuel
Biología
Spinal cord regeneration
Axolotls
title_short Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_fullStr Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full_unstemmed Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_sort Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
dc.creator.none.fl_str_mv Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author Cura Costa, Emanuel
author_facet Cura Costa, Emanuel
Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author_role author
author2 Otsuki, Leo
Rodrigo Albors, Aida
Tanaka, Elly M.
Chara, Osvaldo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biología
Spinal cord regeneration
Axolotls
topic Biología
Spinal cord regeneration
Axolotls
dc.description.none.fl_txt_mv Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Instituto de Física de Líquidos y Sistemas Biológicos
description Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/129987
url http://sedici.unlp.edu.ar/handle/10915/129987
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2050-084X
info:eu-repo/semantics/altIdentifier/doi/10.7554/ eLife.55665
info:eu-repo/semantics/reference/hdl/10915/129991
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616206255915008
score 13.069144