Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls

Autores
Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; Tanaka, Elly M; Chara, Osvaldo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
Fil: Rost, Fabian. Technische Universitat Dresden; Alemania
Fil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Brusch, Lutz. Technische Universitat Dresden; Alemania
Fil: Deutsch, Andreas. Technische Universitat Dresden; Alemania
Fil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; Alemania
Materia
REGENERATION
AXOLOTL
MATHEMATICAL MODELING
SPINAL CORD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/48245

id CONICETDig_3bcc487f59f383be45d7431e1127c93a
oai_identifier_str oai:ri.conicet.gov.ar:11336/48245
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotlsRost, FabianRodrigo Albors, AidaMazurov, VladimirBrusch, LutzDeutsch, AndreasTanaka, Elly MChara, OsvaldoREGENERATIONAXOLOTLMATHEMATICAL MODELINGSPINAL CORDhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.Fil: Rost, Fabian. Technische Universitat Dresden; AlemaniaFil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Brusch, Lutz. Technische Universitat Dresden; AlemaniaFil: Deutsch, Andreas. Technische Universitat Dresden; AlemaniaFil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; AlemaniaeLife2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48245Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-162050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.20357info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/20357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/48245instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
spellingShingle Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
Rost, Fabian
REGENERATION
AXOLOTL
MATHEMATICAL MODELING
SPINAL CORD
title_short Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_full Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_fullStr Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_full_unstemmed Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
title_sort Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
dc.creator.none.fl_str_mv Rost, Fabian
Rodrigo Albors, Aida
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M
Chara, Osvaldo
author Rost, Fabian
author_facet Rost, Fabian
Rodrigo Albors, Aida
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M
Chara, Osvaldo
author_role author
author2 Rodrigo Albors, Aida
Mazurov, Vladimir
Brusch, Lutz
Deutsch, Andreas
Tanaka, Elly M
Chara, Osvaldo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv REGENERATION
AXOLOTL
MATHEMATICAL MODELING
SPINAL CORD
topic REGENERATION
AXOLOTL
MATHEMATICAL MODELING
SPINAL CORD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
Fil: Rost, Fabian. Technische Universitat Dresden; Alemania
Fil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Brusch, Lutz. Technische Universitat Dresden; Alemania
Fil: Deutsch, Andreas. Technische Universitat Dresden; Alemania
Fil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; Alemania
description Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
publishDate 2016
dc.date.none.fl_str_mv 2016-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/48245
Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-16
2050-084X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/48245
identifier_str_mv Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-16
2050-084X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.20357
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/20357
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv eLife
publisher.none.fl_str_mv eLife
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269582115471360
score 13.13397