Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls
- Autores
- Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; Tanaka, Elly M; Chara, Osvaldo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.
Fil: Rost, Fabian. Technische Universitat Dresden; Alemania
Fil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Brusch, Lutz. Technische Universitat Dresden; Alemania
Fil: Deutsch, Andreas. Technische Universitat Dresden; Alemania
Fil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; Alemania - Materia
-
REGENERATION
AXOLOTL
MATHEMATICAL MODELING
SPINAL CORD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/48245
Ver los metadatos del registro completo
id |
CONICETDig_3bcc487f59f383be45d7431e1127c93a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/48245 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotlsRost, FabianRodrigo Albors, AidaMazurov, VladimirBrusch, LutzDeutsch, AndreasTanaka, Elly MChara, OsvaldoREGENERATIONAXOLOTLMATHEMATICAL MODELINGSPINAL CORDhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.Fil: Rost, Fabian. Technische Universitat Dresden; AlemaniaFil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Brusch, Lutz. Technische Universitat Dresden; AlemaniaFil: Deutsch, Andreas. Technische Universitat Dresden; AlemaniaFil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; AlemaniaFil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; AlemaniaeLife2016-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48245Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-162050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.20357info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/20357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/48245instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
title |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
spellingShingle |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls Rost, Fabian REGENERATION AXOLOTL MATHEMATICAL MODELING SPINAL CORD |
title_short |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
title_full |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
title_fullStr |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
title_full_unstemmed |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
title_sort |
Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls |
dc.creator.none.fl_str_mv |
Rost, Fabian Rodrigo Albors, Aida Mazurov, Vladimir Brusch, Lutz Deutsch, Andreas Tanaka, Elly M Chara, Osvaldo |
author |
Rost, Fabian |
author_facet |
Rost, Fabian Rodrigo Albors, Aida Mazurov, Vladimir Brusch, Lutz Deutsch, Andreas Tanaka, Elly M Chara, Osvaldo |
author_role |
author |
author2 |
Rodrigo Albors, Aida Mazurov, Vladimir Brusch, Lutz Deutsch, Andreas Tanaka, Elly M Chara, Osvaldo |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
REGENERATION AXOLOTL MATHEMATICAL MODELING SPINAL CORD |
topic |
REGENERATION AXOLOTL MATHEMATICAL MODELING SPINAL CORD |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls. Fil: Rost, Fabian. Technische Universitat Dresden; Alemania Fil: Rodrigo Albors, Aida. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania Fil: Mazurov, Vladimir. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania Fil: Brusch, Lutz. Technische Universitat Dresden; Alemania Fil: Deutsch, Andreas. Technische Universitat Dresden; Alemania Fil: Tanaka, Elly M. Center for Regenerative Therapies Dresden; Alemania. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Technische Universitat Dresden; Alemania |
description |
Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a highproliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/48245 Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-16 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/48245 |
identifier_str_mv |
Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; et al.; Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls; eLife; eLife; 5; 11-2016; 1-16 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.20357 info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/20357 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife |
publisher.none.fl_str_mv |
eLife |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269582115471360 |
score |
13.13397 |