Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration

Autores
Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Otsuki, Leo. Research Institute Of Molecular Pathology; Austria
Fil: Albors, Aida Rodrigo. University Of Dundee; Reino Unido
Fil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; Austria
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Materia
REGENERATION
AXOLOTL
SPINAL CORD
MATHEMATICAL MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/173798

id CONICETDig_4d5d89cb104f63dc279a9ba93003eab0
oai_identifier_str oai:ri.conicet.gov.ar:11336/173798
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regenerationCura Costa, EmanuelOtsuki, LeoAlbors, Aida RodrigoTanaka, Elly M.Chara, OsvaldoREGENERATIONAXOLOTLSPINAL CORDMATHEMATICAL MODELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Otsuki, Leo. Research Institute Of Molecular Pathology; AustriaFil: Albors, Aida Rodrigo. University Of Dundee; Reino UnidoFil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; AustriaFil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaeLife Sciences Publications2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173798Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-292050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.55665info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/55665info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:45Zoai:ri.conicet.gov.ar:11336/173798instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:45.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
spellingShingle Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
Cura Costa, Emanuel
REGENERATION
AXOLOTL
SPINAL CORD
MATHEMATICAL MODEL
title_short Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_fullStr Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_full_unstemmed Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
title_sort Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
dc.creator.none.fl_str_mv Cura Costa, Emanuel
Otsuki, Leo
Albors, Aida Rodrigo
Tanaka, Elly M.
Chara, Osvaldo
author Cura Costa, Emanuel
author_facet Cura Costa, Emanuel
Otsuki, Leo
Albors, Aida Rodrigo
Tanaka, Elly M.
Chara, Osvaldo
author_role author
author2 Otsuki, Leo
Albors, Aida Rodrigo
Tanaka, Elly M.
Chara, Osvaldo
author2_role author
author
author
author
dc.subject.none.fl_str_mv REGENERATION
AXOLOTL
SPINAL CORD
MATHEMATICAL MODEL
topic REGENERATION
AXOLOTL
SPINAL CORD
MATHEMATICAL MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Otsuki, Leo. Research Institute Of Molecular Pathology; Austria
Fil: Albors, Aida Rodrigo. University Of Dundee; Reino Unido
Fil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; Austria
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
description Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
publishDate 2021
dc.date.none.fl_str_mv 2021-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/173798
Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-29
2050-084X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/173798
identifier_str_mv Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-29
2050-084X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.55665
info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/55665
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv eLife Sciences Publications
publisher.none.fl_str_mv eLife Sciences Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980420669407232
score 12.993085