Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration
- Autores
- Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.
Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina
Fil: Otsuki, Leo. Research Institute Of Molecular Pathology; Austria
Fil: Albors, Aida Rodrigo. University Of Dundee; Reino Unido
Fil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; Austria
Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina - Materia
-
REGENERATION
AXOLOTL
SPINAL CORD
MATHEMATICAL MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173798
Ver los metadatos del registro completo
id |
CONICETDig_4d5d89cb104f63dc279a9ba93003eab0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173798 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regenerationCura Costa, EmanuelOtsuki, LeoAlbors, Aida RodrigoTanaka, Elly M.Chara, OsvaldoREGENERATIONAXOLOTLSPINAL CORDMATHEMATICAL MODELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Otsuki, Leo. Research Institute Of Molecular Pathology; AustriaFil: Albors, Aida Rodrigo. University Of Dundee; Reino UnidoFil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; AustriaFil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaeLife Sciences Publications2021-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173798Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-292050-084XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.55665info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/55665info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:45Zoai:ri.conicet.gov.ar:11336/173798instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:45.489CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
title |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
spellingShingle |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration Cura Costa, Emanuel REGENERATION AXOLOTL SPINAL CORD MATHEMATICAL MODEL |
title_short |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
title_full |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
title_fullStr |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
title_full_unstemmed |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
title_sort |
Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration |
dc.creator.none.fl_str_mv |
Cura Costa, Emanuel Otsuki, Leo Albors, Aida Rodrigo Tanaka, Elly M. Chara, Osvaldo |
author |
Cura Costa, Emanuel |
author_facet |
Cura Costa, Emanuel Otsuki, Leo Albors, Aida Rodrigo Tanaka, Elly M. Chara, Osvaldo |
author_role |
author |
author2 |
Otsuki, Leo Albors, Aida Rodrigo Tanaka, Elly M. Chara, Osvaldo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
REGENERATION AXOLOTL SPINAL CORD MATHEMATICAL MODEL |
topic |
REGENERATION AXOLOTL SPINAL CORD MATHEMATICAL MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration. Fil: Cura Costa, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina Fil: Otsuki, Leo. Research Institute Of Molecular Pathology; Austria Fil: Albors, Aida Rodrigo. University Of Dundee; Reino Unido Fil: Tanaka, Elly M.. Research Institute Of Molecular Pathology; Austria Fil: Chara, Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina |
description |
Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 μm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173798 Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-29 2050-084X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173798 |
identifier_str_mv |
Cura Costa, Emanuel; Otsuki, Leo; Albors, Aida Rodrigo; Tanaka, Elly M.; Chara, Osvaldo; Spatiotemporal control of cell cycle acceleration during axolotl spinal cord regeneration; eLife Sciences Publications; eLife; 10; 5-2021; 1-29 2050-084X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7554/eLife.55665 info:eu-repo/semantics/altIdentifier/url/https://elifesciences.org/articles/55665 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
eLife Sciences Publications |
publisher.none.fl_str_mv |
eLife Sciences Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980420669407232 |
score |
12.993085 |