Young's inequality in trace-class operators

Autores
Argerami, Martín; Farenick, Douglas
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
If a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality.
Facultad de Ciencias Exactas
Materia
Matemática
Operator inequalities
Norms of matrices
Numerical range
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123768

id SEDICI_6577c7dc25243541bfcf4110b165a98a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123768
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Young's inequality in trace-class operatorsArgerami, MartínFarenick, DouglasMatemáticaOperator inequalitiesNorms of matricesNumerical rangeIf a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality.Facultad de Ciencias Exactas2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf727-744http://sedici.unlp.edu.ar/handle/10915/123768enginfo:eu-repo/semantics/altIdentifier/issn/0025-5831info:eu-repo/semantics/altIdentifier/issn/1432-1807info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-002-0400-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:28Zoai:sedici.unlp.edu.ar:10915/123768Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:28.933SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Young's inequality in trace-class operators
title Young's inequality in trace-class operators
spellingShingle Young's inequality in trace-class operators
Argerami, Martín
Matemática
Operator inequalities
Norms of matrices
Numerical range
title_short Young's inequality in trace-class operators
title_full Young's inequality in trace-class operators
title_fullStr Young's inequality in trace-class operators
title_full_unstemmed Young's inequality in trace-class operators
title_sort Young's inequality in trace-class operators
dc.creator.none.fl_str_mv Argerami, Martín
Farenick, Douglas
author Argerami, Martín
author_facet Argerami, Martín
Farenick, Douglas
author_role author
author2 Farenick, Douglas
author2_role author
dc.subject.none.fl_str_mv Matemática
Operator inequalities
Norms of matrices
Numerical range
topic Matemática
Operator inequalities
Norms of matrices
Numerical range
dc.description.none.fl_txt_mv If a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality.
Facultad de Ciencias Exactas
description If a and b are trace-class operators, and if u is a partial isometry, then , where ∥⋅∥1 denotes the norm in the trace class. The present paper characterises the cases of equality in this Young inequality, and the characterisation is examined in the context of both the operator and the Hilbert–Schmidt forms of Young's inequality.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123768
url http://sedici.unlp.edu.ar/handle/10915/123768
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0025-5831
info:eu-repo/semantics/altIdentifier/issn/1432-1807
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00208-002-0400-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
727-744
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616173808779264
score 13.070432