On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
- Autores
- Conde, Cristian Marcelo; Feki, Kais
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Revista con referato
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.
Fil: Feki, Kais. University of Monastir; Túnez.
Fil: Feki, Kais. University of Sfax; Túnez.
Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005). - Fuente
- Ricerche di Matematica. Ago. 2021; 76: 661–679
- Materia
-
Positive Operator
Joint Numerical Radius
Normal Operator
2x2 Operator Matrices
Matemáticas
Matemática Pura - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/2331
Ver los metadatos del registro completo
id |
RIUNGS_0a6bd2762d58e26064c8c954986ac129 |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/2331 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operatorsConde, Cristian MarceloFeki, KaisPositive OperatorJoint Numerical RadiusNormal Operator2x2 Operator MatricesMatemáticasMatemática PuraRevista con referatoFil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.Fil: Feki, Kais. University of Monastir; Túnez.Fil: Feki, Kais. University of Sfax; Túnez.Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005).Springer2025-07-24T18:00:32Z2025-07-24T18:00:32Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfConde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679.0035-5038http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331Ricerche di Matematica. Ago. 2021; 76: 661–679reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1007/s11587-021-00629-6info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-23T11:20:11Zoai:repositorio.ungs.edu.ar:UNGS/2331instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-23 11:20:11.567Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
title |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
spellingShingle |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators Conde, Cristian Marcelo Positive Operator Joint Numerical Radius Normal Operator 2x2 Operator Matrices Matemáticas Matemática Pura |
title_short |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
title_full |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
title_fullStr |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
title_full_unstemmed |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
title_sort |
On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators |
dc.creator.none.fl_str_mv |
Conde, Cristian Marcelo Feki, Kais |
author |
Conde, Cristian Marcelo |
author_facet |
Conde, Cristian Marcelo Feki, Kais |
author_role |
author |
author2 |
Feki, Kais |
author2_role |
author |
dc.subject.none.fl_str_mv |
Positive Operator Joint Numerical Radius Normal Operator 2x2 Operator Matrices Matemáticas Matemática Pura |
topic |
Positive Operator Joint Numerical Radius Normal Operator 2x2 Operator Matrices Matemáticas Matemática Pura |
dc.description.none.fl_txt_mv |
Revista con referato Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina. Fil: Feki, Kais. University of Monastir; Túnez. Fil: Feki, Kais. University of Sfax; Túnez. Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005). |
description |
Revista con referato |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2025-07-24T18:00:32Z 2025-07-24T18:00:32Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Conde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679. 0035-5038 http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331 |
identifier_str_mv |
Conde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679. 0035-5038 |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://doi.org/10.1007/s11587-021-00629-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
restrictedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Ricerche di Matematica. Ago. 2021; 76: 661–679 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1846789541865717760 |
score |
12.471625 |