On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators

Autores
Conde, Cristian Marcelo; Feki, Kais
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Revista con referato
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.
Fil: Feki, Kais. University of Monastir; Túnez.
Fil: Feki, Kais. University of Sfax; Túnez.
Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005).
Fuente
Ricerche di Matematica. Ago. 2021; 76: 661–679
Materia
Positive Operator
Joint Numerical Radius
Normal Operator
2x2 Operator Matrices
Matemáticas
Matemática Pura
Nivel de accesibilidad
acceso restringido
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
Repositorio Institucional UNGS
Institución
Universidad Nacional de General Sarmiento
OAI Identificador
oai:repositorio.ungs.edu.ar:UNGS/2331

id RIUNGS_0a6bd2762d58e26064c8c954986ac129
oai_identifier_str oai:repositorio.ungs.edu.ar:UNGS/2331
network_acronym_str RIUNGS
repository_id_str
network_name_str Repositorio Institucional UNGS
spelling On some inequalities for the generalized joint numerical radius of semi-Hilbert space operatorsConde, Cristian MarceloFeki, KaisPositive OperatorJoint Numerical RadiusNormal Operator2x2 Operator MatricesMatemáticasMatemática PuraRevista con referatoFil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.Fil: Feki, Kais. University of Monastir; Túnez.Fil: Feki, Kais. University of Sfax; Túnez.Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005).Springer2025-07-24T18:00:32Z2025-07-24T18:00:32Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfConde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679.0035-5038http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331Ricerche di Matematica. Ago. 2021; 76: 661–679reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1007/s11587-021-00629-6info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-10-23T11:20:11Zoai:repositorio.ungs.edu.ar:UNGS/2331instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-10-23 11:20:11.567Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse
dc.title.none.fl_str_mv On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
title On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
spellingShingle On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
Conde, Cristian Marcelo
Positive Operator
Joint Numerical Radius
Normal Operator
2x2 Operator Matrices
Matemáticas
Matemática Pura
title_short On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
title_full On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
title_fullStr On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
title_full_unstemmed On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
title_sort On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators
dc.creator.none.fl_str_mv Conde, Cristian Marcelo
Feki, Kais
author Conde, Cristian Marcelo
author_facet Conde, Cristian Marcelo
Feki, Kais
author_role author
author2 Feki, Kais
author2_role author
dc.subject.none.fl_str_mv Positive Operator
Joint Numerical Radius
Normal Operator
2x2 Operator Matrices
Matemáticas
Matemática Pura
topic Positive Operator
Joint Numerical Radius
Normal Operator
2x2 Operator Matrices
Matemáticas
Matemática Pura
dc.description.none.fl_txt_mv Revista con referato
Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.
Fil: Feki, Kais. University of Monastir; Túnez.
Fil: Feki, Kais. University of Sfax; Túnez.
Let A be a positive (semidefinite) bounded linear operator on a complex Hilbert space (H, ⟨ · , · ⟩). The semi-inner product induced by A is defined by ⟨ x, y⟩ A: = ⟨ Ax, y⟩ for all x, y∈ H and defines a seminorm ‖ · ‖ A on H. This makes H into a semi-Hilbert space. For p∈ [1 , + ∞) , the generalized A-joint numerical radius of a d-tuple of operators T= (T1, … , Td) is given by ωA,p(T)=sup‖x‖A=1(∑k=1d|〈Tkx,x〉A|p)1p.Our aim in this paper is to establish several bounds involving ωA,p(·). In particular, under suitable conditions on the operators tuple T, we generalize the well-known inequalities due to Kittaneh (Studia Math 168(1):73–80, 2005).
description Revista con referato
publishDate 2021
dc.date.none.fl_str_mv 2021
2025-07-24T18:00:32Z
2025-07-24T18:00:32Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Conde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679.
0035-5038
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331
identifier_str_mv Conde, C. M. y Feki, K. (2021). On some inequalities for the generalized joint numerical radius of semi-Hilbert space operators. Ricerche di Matematica, 76, 661–679.
0035-5038
url http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2331
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://doi.org/10.1007/s11587-021-00629-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Ricerche di Matematica. Ago. 2021; 76: 661–679
reponame:Repositorio Institucional UNGS
instname:Universidad Nacional de General Sarmiento
reponame_str Repositorio Institucional UNGS
collection Repositorio Institucional UNGS
instname_str Universidad Nacional de General Sarmiento
repository.name.fl_str_mv Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento
repository.mail.fl_str_mv ubyd@campus.ungs.edu.ar
_version_ 1846789541865717760
score 12.471625