Weighted inequalities for Hardy-Steklov operators

Autores
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: Salvador, P. Ortega. Universidad de Málaga; España
Materia
HARDY-STEKLOV OPERATOR
INEQUALITIES
WEIGHTS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84239

id CONICETDig_8bc375fa0696f77ee61833655b4a2873
oai_identifier_str oai:ri.conicet.gov.ar:11336/84239
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted inequalities for Hardy-Steklov operatorsBernardis, Ana LuciaMartín Reyes, Francisco JavierSalvador, P. OrtegaHARDY-STEKLOV OPERATORINEQUALITIESWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Martín Reyes, Francisco Javier. Universidad de Málaga; EspañaFil: Salvador, P. Ortega. Universidad de Málaga; EspañaCanadian Mathematical Soc2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84239Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-2950008-414XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2007-011-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:05:06Zoai:ri.conicet.gov.ar:11336/84239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:05:06.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted inequalities for Hardy-Steklov operators
title Weighted inequalities for Hardy-Steklov operators
spellingShingle Weighted inequalities for Hardy-Steklov operators
Bernardis, Ana Lucia
HARDY-STEKLOV OPERATOR
INEQUALITIES
WEIGHTS
title_short Weighted inequalities for Hardy-Steklov operators
title_full Weighted inequalities for Hardy-Steklov operators
title_fullStr Weighted inequalities for Hardy-Steklov operators
title_full_unstemmed Weighted inequalities for Hardy-Steklov operators
title_sort Weighted inequalities for Hardy-Steklov operators
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
Salvador, P. Ortega
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Martín Reyes, Francisco Javier
Salvador, P. Ortega
author_role author
author2 Martín Reyes, Francisco Javier
Salvador, P. Ortega
author2_role author
author
dc.subject.none.fl_str_mv HARDY-STEKLOV OPERATOR
INEQUALITIES
WEIGHTS
topic HARDY-STEKLOV OPERATOR
INEQUALITIES
WEIGHTS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Martín Reyes, Francisco Javier. Universidad de Málaga; España
Fil: Salvador, P. Ortega. Universidad de Málaga; España
description We characterize the pairs of weights (v, w) for which the operator Tf(x) = g(x) ∫s(x)h(x) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < ∞. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon, In particular, we do not assume differentiability properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Φ(x) = sup (∫cd gqw) 1/p (∫s(d)h(c) v1-p′) 1/p′ belongs to Lr(gqw), where 1/r = 1/q - 1/q and the supremum is taken over all c and d such that c ≤ x ≤ d and s(d) ≤ h(c).
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84239
Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-295
0008-414X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84239
identifier_str_mv Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Salvador, P. Ortega; Weighted inequalities for Hardy-Steklov operators; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 59; 2; 12-2007; 276-295
0008-414X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.4153/CJM-2007-011-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Canadian Mathematical Soc
publisher.none.fl_str_mv Canadian Mathematical Soc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613883652734976
score 13.070432