Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality
- Autores
- Aladsani, Feryal; Alajyan, Asmahan; Conde, Cristian Marcelo; Feki, Kais
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H. An operator T is said to be normaloid if its numerical radius w(T) equals its operator norm kTk. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and normparallelism. Mainly, we show that T is normaloid if, and only if, there exists ξ0 ∈ C with |ξ0| = kTk such that I ⊥BJ (T − ξ0I), where ⊥BJ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations.
Fil: Aladsani, Feryal. King Faisal University; Arabia Saudita
Fil: Alajyan, Asmahan. King Saud University; Arabia Saudita
Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Matemática;
Fil: Feki, Kais. Najran University; Arabia Saudita - Materia
-
Positive operator
Numerical radius
Operator norm
Inequalities - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/275832
Ver los metadatos del registro completo
| id |
CONICETDig_b95fa3c8e0a801c717c4be7e44b77052 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/275832 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonalityAladsani, FeryalAlajyan, AsmahanConde, Cristian MarceloFeki, KaisPositive operatorNumerical radiusOperator normInequalitieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H. An operator T is said to be normaloid if its numerical radius w(T) equals its operator norm kTk. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and normparallelism. Mainly, we show that T is normaloid if, and only if, there exists ξ0 ∈ C with |ξ0| = kTk such that I ⊥BJ (T − ξ0I), where ⊥BJ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations.Fil: Aladsani, Feryal. King Faisal University; Arabia SauditaFil: Alajyan, Asmahan. King Saud University; Arabia SauditaFil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Matemática;Fil: Feki, Kais. Najran University; Arabia SauditaAIMS Press2025-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/275832Aladsani, Feryal; Alajyan, Asmahan; Conde, Cristian Marcelo; Feki, Kais; Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20066-200832473-6988CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025897info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025897info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:51:45Zoai:ri.conicet.gov.ar:11336/275832instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:51:45.38CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| title |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| spellingShingle |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality Aladsani, Feryal Positive operator Numerical radius Operator norm Inequalities |
| title_short |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| title_full |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| title_fullStr |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| title_full_unstemmed |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| title_sort |
Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality |
| dc.creator.none.fl_str_mv |
Aladsani, Feryal Alajyan, Asmahan Conde, Cristian Marcelo Feki, Kais |
| author |
Aladsani, Feryal |
| author_facet |
Aladsani, Feryal Alajyan, Asmahan Conde, Cristian Marcelo Feki, Kais |
| author_role |
author |
| author2 |
Alajyan, Asmahan Conde, Cristian Marcelo Feki, Kais |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Positive operator Numerical radius Operator norm Inequalities |
| topic |
Positive operator Numerical radius Operator norm Inequalities |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H. An operator T is said to be normaloid if its numerical radius w(T) equals its operator norm kTk. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and normparallelism. Mainly, we show that T is normaloid if, and only if, there exists ξ0 ∈ C with |ξ0| = kTk such that I ⊥BJ (T − ξ0I), where ⊥BJ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations. Fil: Aladsani, Feryal. King Faisal University; Arabia Saudita Fil: Alajyan, Asmahan. King Saud University; Arabia Saudita Fil: Conde, Cristian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias. Área de Matemática; Fil: Feki, Kais. Najran University; Arabia Saudita |
| description |
Let H be a complex Hilbert space and B(H) the algebra of bounded linear operators on H. An operator T is said to be normaloid if its numerical radius w(T) equals its operator norm kTk. In this paper, we establish several characterizations of normaloid operators in Hilbert spaces. In particular, we investigate these operators through the framework of Birkhoff–James orthogonality and normparallelism. Mainly, we show that T is normaloid if, and only if, there exists ξ0 ∈ C with |ξ0| = kTk such that I ⊥BJ (T − ξ0I), where ⊥BJ denotes Birkhoff–James orthogonality. We also present further equivalent formulations and explore various structural consequences of these characterizations. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/275832 Aladsani, Feryal; Alajyan, Asmahan; Conde, Cristian Marcelo; Feki, Kais; Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20066-20083 2473-6988 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/275832 |
| identifier_str_mv |
Aladsani, Feryal; Alajyan, Asmahan; Conde, Cristian Marcelo; Feki, Kais; Characterizations of normaloid operators in Hilbert spaces via Birkhoff–James orthogonality; AIMS Press; AIMS Mathematics; 10; 9; 9-2025; 20066-20083 2473-6988 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.aimspress.com/article/doi/10.3934/math.2025897 info:eu-repo/semantics/altIdentifier/doi/10.3934/math.2025897 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
AIMS Press |
| publisher.none.fl_str_mv |
AIMS Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505943471620096 |
| score |
13.275514 |