Spectral enclosures for a class of block operator matrices

Autores
Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Langer, Matthias. University of Strathclyde; Reino Unido
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; Alemania
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania
Materia
BLOCK OPERATOR MATRICES
QUADRATIC NUMERICAL RANGE
SPECTRAL ENCLOSURE
GERSHGORIN'S CIRCLE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/106953

id CONICETDig_524d53fac57c23610b469ae8285de3cd
oai_identifier_str oai:ri.conicet.gov.ar:11336/106953
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spectral enclosures for a class of block operator matricesGiribet, Juan IgnacioLanger, MatthiasMartinez Peria, Francisco DardoPhilipp, FriedrichTrunk, Carsten JoachimBLOCK OPERATOR MATRICESQUADRATIC NUMERICAL RANGESPECTRAL ENCLOSUREGERSHGORIN'S CIRCLEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Langer, Matthias. University of Strathclyde; Reino UnidoFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaFil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; AlemaniaFil: Trunk, Carsten Joachim. Technische Universität Ilmenau; AlemaniaAcademic Press Inc Elsevier Science2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106953Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 1084550022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2019.108455info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123619304483info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.01519info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:05Zoai:ri.conicet.gov.ar:11336/106953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:05.877CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spectral enclosures for a class of block operator matrices
title Spectral enclosures for a class of block operator matrices
spellingShingle Spectral enclosures for a class of block operator matrices
Giribet, Juan Ignacio
BLOCK OPERATOR MATRICES
QUADRATIC NUMERICAL RANGE
SPECTRAL ENCLOSURE
GERSHGORIN'S CIRCLE
title_short Spectral enclosures for a class of block operator matrices
title_full Spectral enclosures for a class of block operator matrices
title_fullStr Spectral enclosures for a class of block operator matrices
title_full_unstemmed Spectral enclosures for a class of block operator matrices
title_sort Spectral enclosures for a class of block operator matrices
dc.creator.none.fl_str_mv Giribet, Juan Ignacio
Langer, Matthias
Martinez Peria, Francisco Dardo
Philipp, Friedrich
Trunk, Carsten Joachim
author Giribet, Juan Ignacio
author_facet Giribet, Juan Ignacio
Langer, Matthias
Martinez Peria, Francisco Dardo
Philipp, Friedrich
Trunk, Carsten Joachim
author_role author
author2 Langer, Matthias
Martinez Peria, Francisco Dardo
Philipp, Friedrich
Trunk, Carsten Joachim
author2_role author
author
author
author
dc.subject.none.fl_str_mv BLOCK OPERATOR MATRICES
QUADRATIC NUMERICAL RANGE
SPECTRAL ENCLOSURE
GERSHGORIN'S CIRCLE
topic BLOCK OPERATOR MATRICES
QUADRATIC NUMERICAL RANGE
SPECTRAL ENCLOSURE
GERSHGORIN'S CIRCLE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Langer, Matthias. University of Strathclyde; Reino Unido
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; Alemania
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania
description We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/106953
Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 108455
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/106953
identifier_str_mv Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 108455
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2019.108455
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123619304483
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.01519
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614211840245760
score 13.070432