Spectral enclosures for a class of block operator matrices
- Autores
- Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.
Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Langer, Matthias. University of Strathclyde; Reino Unido
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina
Fil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; Alemania
Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania - Materia
-
BLOCK OPERATOR MATRICES
QUADRATIC NUMERICAL RANGE
SPECTRAL ENCLOSURE
GERSHGORIN'S CIRCLE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106953
Ver los metadatos del registro completo
id |
CONICETDig_524d53fac57c23610b469ae8285de3cd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106953 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectral enclosures for a class of block operator matricesGiribet, Juan IgnacioLanger, MatthiasMartinez Peria, Francisco DardoPhilipp, FriedrichTrunk, Carsten JoachimBLOCK OPERATOR MATRICESQUADRATIC NUMERICAL RANGESPECTRAL ENCLOSUREGERSHGORIN'S CIRCLEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators.Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Langer, Matthias. University of Strathclyde; Reino UnidoFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; ArgentinaFil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; AlemaniaFil: Trunk, Carsten Joachim. Technische Universität Ilmenau; AlemaniaAcademic Press Inc Elsevier Science2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106953Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 1084550022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2019.108455info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123619304483info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.01519info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:05Zoai:ri.conicet.gov.ar:11336/106953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:05.877CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectral enclosures for a class of block operator matrices |
title |
Spectral enclosures for a class of block operator matrices |
spellingShingle |
Spectral enclosures for a class of block operator matrices Giribet, Juan Ignacio BLOCK OPERATOR MATRICES QUADRATIC NUMERICAL RANGE SPECTRAL ENCLOSURE GERSHGORIN'S CIRCLE |
title_short |
Spectral enclosures for a class of block operator matrices |
title_full |
Spectral enclosures for a class of block operator matrices |
title_fullStr |
Spectral enclosures for a class of block operator matrices |
title_full_unstemmed |
Spectral enclosures for a class of block operator matrices |
title_sort |
Spectral enclosures for a class of block operator matrices |
dc.creator.none.fl_str_mv |
Giribet, Juan Ignacio Langer, Matthias Martinez Peria, Francisco Dardo Philipp, Friedrich Trunk, Carsten Joachim |
author |
Giribet, Juan Ignacio |
author_facet |
Giribet, Juan Ignacio Langer, Matthias Martinez Peria, Francisco Dardo Philipp, Friedrich Trunk, Carsten Joachim |
author_role |
author |
author2 |
Langer, Matthias Martinez Peria, Francisco Dardo Philipp, Friedrich Trunk, Carsten Joachim |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BLOCK OPERATOR MATRICES QUADRATIC NUMERICAL RANGE SPECTRAL ENCLOSURE GERSHGORIN'S CIRCLE |
topic |
BLOCK OPERATOR MATRICES QUADRATIC NUMERICAL RANGE SPECTRAL ENCLOSURE GERSHGORIN'S CIRCLE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators. Fil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Langer, Matthias. University of Strathclyde; Reino Unido Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina Fil: Philipp, Friedrich. Katholische Universitat Eichstatt-ingolstadt; Alemania Fil: Trunk, Carsten Joachim. Technische Universität Ilmenau; Alemania |
description |
We prove new spectral enclosures for the non-real spectrum of a class of 2 X 2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B^* as off-diagonal entries. One of our main results resembles Gershgorin´s circle theorem. The enclosures are applied to J-frame operators. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106953 Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 108455 0022-1236 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106953 |
identifier_str_mv |
Giribet, Juan Ignacio; Langer, Matthias; Martinez Peria, Francisco Dardo; Philipp, Friedrich; Trunk, Carsten Joachim; Spectral enclosures for a class of block operator matrices; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 10; 1-2020; 1-30; 108455 0022-1236 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2019.108455 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022123619304483 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.01519 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614211840245760 |
score |
13.070432 |