Deformation techniques for counting the real solutions of specific polynomial equation systems
- Autores
- Dratman, E.; Matera, G.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present a deformation technique which allows us to determine the number of real solutions of certain specific polynomial equation system. We apply this deformation technique in order to determine the number of stationary solutions of the semidiscretization of certain parabolic differential equations.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Ecuaciones
Polinomios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/185588
Ver los metadatos del registro completo
| id |
SEDICI_623434d77ec874ae58cc08e95fb50601 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/185588 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Deformation techniques for counting the real solutions of specific polynomial equation systemsDratman, E.Matera, G.Ciencias InformáticasEcuacionesPolinomiosWe present a deformation technique which allows us to determine the number of real solutions of certain specific polynomial equation system. We apply this deformation technique in order to determine the number of stationary solutions of the semidiscretization of certain parabolic differential equations.Sociedad Argentina de Informática e Investigación Operativa2002-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf42-52http://sedici.unlp.edu.ar/handle/10915/185588enginfo:eu-repo/semantics/altIdentifier/issn/1666-1133info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:31:01Zoai:sedici.unlp.edu.ar:10915/185588Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:31:01.994SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| title |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| spellingShingle |
Deformation techniques for counting the real solutions of specific polynomial equation systems Dratman, E. Ciencias Informáticas Ecuaciones Polinomios |
| title_short |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| title_full |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| title_fullStr |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| title_full_unstemmed |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| title_sort |
Deformation techniques for counting the real solutions of specific polynomial equation systems |
| dc.creator.none.fl_str_mv |
Dratman, E. Matera, G. |
| author |
Dratman, E. |
| author_facet |
Dratman, E. Matera, G. |
| author_role |
author |
| author2 |
Matera, G. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Ecuaciones Polinomios |
| topic |
Ciencias Informáticas Ecuaciones Polinomios |
| dc.description.none.fl_txt_mv |
We present a deformation technique which allows us to determine the number of real solutions of certain specific polynomial equation system. We apply this deformation technique in order to determine the number of stationary solutions of the semidiscretization of certain parabolic differential equations. Sociedad Argentina de Informática e Investigación Operativa |
| description |
We present a deformation technique which allows us to determine the number of real solutions of certain specific polynomial equation system. We apply this deformation technique in order to determine the number of stationary solutions of the semidiscretization of certain parabolic differential equations. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/185588 |
| url |
http://sedici.unlp.edu.ar/handle/10915/185588 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-1133 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 42-52 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783816479277056 |
| score |
12.982451 |