Deformation Techniques for Efficient Polynomial Equation Solving
- Autores
- Heintz, J.; Krick, T.; Puddu, S.; Sabia, J.; Waissbein, A.
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Complexity 2000;16(1):70-109
- Materia
- Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0885064X_v16_n1_p70_Heintz
Ver los metadatos del registro completo
id |
BDUBAFCEN_2900a8d389a4ab698a479696456ed20c |
---|---|
oai_identifier_str |
paperaa:paper_0885064X_v16_n1_p70_Heintz |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Deformation Techniques for Efficient Polynomial Equation SolvingHeintz, J.Krick, T.Puddu, S.Sabia, J.Waissbein, A.Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iterationSuppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_HeintzJ. Complexity 2000;16(1):70-109reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:20Zpaperaa:paper_0885064X_v16_n1_p70_HeintzInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.216Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Deformation Techniques for Efficient Polynomial Equation Solving |
title |
Deformation Techniques for Efficient Polynomial Equation Solving |
spellingShingle |
Deformation Techniques for Efficient Polynomial Equation Solving Heintz, J. Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration |
title_short |
Deformation Techniques for Efficient Polynomial Equation Solving |
title_full |
Deformation Techniques for Efficient Polynomial Equation Solving |
title_fullStr |
Deformation Techniques for Efficient Polynomial Equation Solving |
title_full_unstemmed |
Deformation Techniques for Efficient Polynomial Equation Solving |
title_sort |
Deformation Techniques for Efficient Polynomial Equation Solving |
dc.creator.none.fl_str_mv |
Heintz, J. Krick, T. Puddu, S. Sabia, J. Waissbein, A. |
author |
Heintz, J. |
author_facet |
Heintz, J. Krick, T. Puddu, S. Sabia, J. Waissbein, A. |
author_role |
author |
author2 |
Krick, T. Puddu, S. Sabia, J. Waissbein, A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration |
topic |
Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration |
dc.description.none.fl_txt_mv |
Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_Heintz |
url |
http://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_Heintz |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Complexity 2000;16(1):70-109 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340699735851008 |
score |
12.623145 |