Deformation Techniques for Efficient Polynomial Equation Solving

Autores
Heintz, J.; Krick, T.; Puddu, S.; Sabia, J.; Waissbein, A.
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Complexity 2000;16(1):70-109
Materia
Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0885064X_v16_n1_p70_Heintz

id BDUBAFCEN_2900a8d389a4ab698a479696456ed20c
oai_identifier_str paperaa:paper_0885064X_v16_n1_p70_Heintz
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Deformation Techniques for Efficient Polynomial Equation SolvingHeintz, J.Krick, T.Puddu, S.Sabia, J.Waissbein, A.Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iterationSuppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_HeintzJ. Complexity 2000;16(1):70-109reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:20Zpaperaa:paper_0885064X_v16_n1_p70_HeintzInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:22.216Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Deformation Techniques for Efficient Polynomial Equation Solving
title Deformation Techniques for Efficient Polynomial Equation Solving
spellingShingle Deformation Techniques for Efficient Polynomial Equation Solving
Heintz, J.
Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration
title_short Deformation Techniques for Efficient Polynomial Equation Solving
title_full Deformation Techniques for Efficient Polynomial Equation Solving
title_fullStr Deformation Techniques for Efficient Polynomial Equation Solving
title_full_unstemmed Deformation Techniques for Efficient Polynomial Equation Solving
title_sort Deformation Techniques for Efficient Polynomial Equation Solving
dc.creator.none.fl_str_mv Heintz, J.
Krick, T.
Puddu, S.
Sabia, J.
Waissbein, A.
author Heintz, J.
author_facet Heintz, J.
Krick, T.
Puddu, S.
Sabia, J.
Waissbein, A.
author_role author
author2 Krick, T.
Puddu, S.
Sabia, J.
Waissbein, A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration
topic Polynomial equation system; arithmetic circuit; shape (or primitive element) lemma; Newton-Hensel iteration
dc.description.none.fl_txt_mv Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.
Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Puddu, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Suppose we are given a parametric polynomial equation system encoded by an arithmetic circuit, which represents a generically flat and unramified family of zero-dimensional algebraic varieties. Let us also assume that there is given the complete description of the solution of a particular unramified parameter instance of our system. We show that it is possible to "move" the given particular solution along the parameter space in order to reconstruct - by means of an arithmetic circuit - the coordinates of the solutions of the system for an arbitrary parameter instance. The underlying algorithm is highly efficient, i.e., polynomial in the syntactic description of the input and the following geometric invariants: the number of solutions of a typical parameter instance and the degree of the polynomials occurring in the output. In fact, we prove a slightly more general result, which implies the previous statement by means of a well-known primitive element algorithm. We produce an efficient algorithmic description of the hypersurface obtained projecting polynomially the given generically flat family of varieties into a suitable affine space. © 2000 Academic Press.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_Heintz
url http://hdl.handle.net/20.500.12110/paper_0885064X_v16_n1_p70_Heintz
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Complexity 2000;16(1):70-109
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340699735851008
score 12.623145