A novel distributed architecture for IoT image processing using low-cost devices and open internet standards

Autores
Pérez, Carlos A.; Cleva, Mario; Liska, Diego O.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Industry 4.0 can be defined as the integration of computers and automation to current industrial processes, with addition of smart and autonomous systems leveraged by machine learning techniques. In this scenario, a compact, dependable and fast controller is desired, featuring low energy consumption, easily programming and maintenance, with no mobile parts. Nowadays, computing power in single board computers, e.g. the Raspberry Pi among others, has been increased at a very important rate. In just three generations, Pi computers offer almost a two-fold speed gain, when compared to first models. Its design, an underlying video driver with general capabilities of regular OSes, makes them quite suitable to build image processing systems at very low cost, with no mobile parts and low energy consumption. However, designing such a system for industrial image processing is a tough challenge, since it implies to integrate cameras, image processing libraries, database servers and application software with graphical user interface, in an already resource constrained device. This work presents a new architecture for this kind of systems, by means of open internet standards, using a self-contained, high performance web server to publish a RESTful API and a set of web pages that use latest HTML5 capabilities to manage USB webcams and system data. This proposal also integrates OpenCV as a compiled script on client-side using the new WASM paradigm, with an optimized storage for images using -industry-standard RDBMS and a modular design that can target Windows and Linux as well.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Devices
Computer vision
Web assembly
OpenCV
Embedded systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/89265

id SEDICI_58a7320a3222c1f12f3ce12ab0e7f888
oai_identifier_str oai:sedici.unlp.edu.ar:10915/89265
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A novel distributed architecture for IoT image processing using low-cost devices and open internet standardsPérez, Carlos A.Cleva, MarioLiska, Diego O.Ciencias InformáticasDevicesComputer visionWeb assemblyOpenCVEmbedded systemsIndustry 4.0 can be defined as the integration of computers and automation to current industrial processes, with addition of smart and autonomous systems leveraged by machine learning techniques. In this scenario, a compact, dependable and fast controller is desired, featuring low energy consumption, easily programming and maintenance, with no mobile parts. Nowadays, computing power in single board computers, e.g. the Raspberry Pi among others, has been increased at a very important rate. In just three generations, Pi computers offer almost a two-fold speed gain, when compared to first models. Its design, an underlying video driver with general capabilities of regular OSes, makes them quite suitable to build image processing systems at very low cost, with no mobile parts and low energy consumption. However, designing such a system for industrial image processing is a tough challenge, since it implies to integrate cameras, image processing libraries, database servers and application software with graphical user interface, in an already resource constrained device. This work presents a new architecture for this kind of systems, by means of open internet standards, using a self-contained, high performance web server to publish a RESTful API and a set of web pages that use latest HTML5 capabilities to manage USB webcams and system data. This proposal also integrates OpenCV as a compiled script on client-side using the new WASM paradigm, with an optimized storage for images using -industry-standard RDBMS and a modular design that can target Windows and Linux as well.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf19-33http://sedici.unlp.edu.ar/handle/10915/89265enginfo:eu-repo/semantics/altIdentifier/issn/2683-8982info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:18Zoai:sedici.unlp.edu.ar:10915/89265Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:19.155SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
title A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
spellingShingle A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
Pérez, Carlos A.
Ciencias Informáticas
Devices
Computer vision
Web assembly
OpenCV
Embedded systems
title_short A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
title_full A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
title_fullStr A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
title_full_unstemmed A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
title_sort A novel distributed architecture for IoT image processing using low-cost devices and open internet standards
dc.creator.none.fl_str_mv Pérez, Carlos A.
Cleva, Mario
Liska, Diego O.
author Pérez, Carlos A.
author_facet Pérez, Carlos A.
Cleva, Mario
Liska, Diego O.
author_role author
author2 Cleva, Mario
Liska, Diego O.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Devices
Computer vision
Web assembly
OpenCV
Embedded systems
topic Ciencias Informáticas
Devices
Computer vision
Web assembly
OpenCV
Embedded systems
dc.description.none.fl_txt_mv Industry 4.0 can be defined as the integration of computers and automation to current industrial processes, with addition of smart and autonomous systems leveraged by machine learning techniques. In this scenario, a compact, dependable and fast controller is desired, featuring low energy consumption, easily programming and maintenance, with no mobile parts. Nowadays, computing power in single board computers, e.g. the Raspberry Pi among others, has been increased at a very important rate. In just three generations, Pi computers offer almost a two-fold speed gain, when compared to first models. Its design, an underlying video driver with general capabilities of regular OSes, makes them quite suitable to build image processing systems at very low cost, with no mobile parts and low energy consumption. However, designing such a system for industrial image processing is a tough challenge, since it implies to integrate cameras, image processing libraries, database servers and application software with graphical user interface, in an already resource constrained device. This work presents a new architecture for this kind of systems, by means of open internet standards, using a self-contained, high performance web server to publish a RESTful API and a set of web pages that use latest HTML5 capabilities to manage USB webcams and system data. This proposal also integrates OpenCV as a compiled script on client-side using the new WASM paradigm, with an optimized storage for images using -industry-standard RDBMS and a modular design that can target Windows and Linux as well.
Sociedad Argentina de Informática e Investigación Operativa
description Industry 4.0 can be defined as the integration of computers and automation to current industrial processes, with addition of smart and autonomous systems leveraged by machine learning techniques. In this scenario, a compact, dependable and fast controller is desired, featuring low energy consumption, easily programming and maintenance, with no mobile parts. Nowadays, computing power in single board computers, e.g. the Raspberry Pi among others, has been increased at a very important rate. In just three generations, Pi computers offer almost a two-fold speed gain, when compared to first models. Its design, an underlying video driver with general capabilities of regular OSes, makes them quite suitable to build image processing systems at very low cost, with no mobile parts and low energy consumption. However, designing such a system for industrial image processing is a tough challenge, since it implies to integrate cameras, image processing libraries, database servers and application software with graphical user interface, in an already resource constrained device. This work presents a new architecture for this kind of systems, by means of open internet standards, using a self-contained, high performance web server to publish a RESTful API and a set of web pages that use latest HTML5 capabilities to manage USB webcams and system data. This proposal also integrates OpenCV as a compiled script on client-side using the new WASM paradigm, with an optimized storage for images using -industry-standard RDBMS and a modular design that can target Windows and Linux as well.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/89265
url http://sedici.unlp.edu.ar/handle/10915/89265
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2683-8982
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.format.none.fl_str_mv application/pdf
19-33
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616056823349248
score 13.069144