The left adjoint of Spec from a category of lattice-ordered groups

Autores
Castiglioni, José Luis; San Martín, Hernán Javier
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let us write ℓGu f for the category whose objects are lattice-ordered abelian groups (l-groups for short) with a strong unit and finite prime spectrum endowed with a collection of Archimedean elements, one for each prime l-ideal, which satisfy certain properties, and whose arrows are l-homomorphisms with additional structure. In this paper we show that a functor which assigns to each object (A,û) ∈ ℓGu f the prime spectrum of A, and to each arrow f:(A,û)→(B,û) ∈ ℓGu f the naturally induced p-morphism, has a left adjoint.
Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Categorical Adjunction
Lattice Ordered Abelian Groups
Local Order Units
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53628

id CONICETDig_d3a2baa2f65c781a10959f19ddc123ca
oai_identifier_str oai:ri.conicet.gov.ar:11336/53628
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The left adjoint of Spec from a category of lattice-ordered groupsCastiglioni, José LuisSan Martín, Hernán JavierCategorical AdjunctionLattice Ordered Abelian GroupsLocal Order Unitshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let us write ℓGu f for the category whose objects are lattice-ordered abelian groups (l-groups for short) with a strong unit and finite prime spectrum endowed with a collection of Archimedean elements, one for each prime l-ideal, which satisfy certain properties, and whose arrows are l-homomorphisms with additional structure. In this paper we show that a functor which assigns to each object (A,û) ∈ ℓGu f the prime spectrum of A, and to each arrow f:(A,û)→(B,û) ∈ ℓGu f the naturally induced p-morphism, has a left adjoint.Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53628Castiglioni, José Luis; San Martín, Hernán Javier; The left adjoint of Spec from a category of lattice-ordered groups; Elsevier Science; Journal of Applied Logic; 15; 5-2016; 1-151570-8683CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jal.2015.11.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1570868315000865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:47Zoai:ri.conicet.gov.ar:11336/53628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:47.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The left adjoint of Spec from a category of lattice-ordered groups
title The left adjoint of Spec from a category of lattice-ordered groups
spellingShingle The left adjoint of Spec from a category of lattice-ordered groups
Castiglioni, José Luis
Categorical Adjunction
Lattice Ordered Abelian Groups
Local Order Units
title_short The left adjoint of Spec from a category of lattice-ordered groups
title_full The left adjoint of Spec from a category of lattice-ordered groups
title_fullStr The left adjoint of Spec from a category of lattice-ordered groups
title_full_unstemmed The left adjoint of Spec from a category of lattice-ordered groups
title_sort The left adjoint of Spec from a category of lattice-ordered groups
dc.creator.none.fl_str_mv Castiglioni, José Luis
San Martín, Hernán Javier
author Castiglioni, José Luis
author_facet Castiglioni, José Luis
San Martín, Hernán Javier
author_role author
author2 San Martín, Hernán Javier
author2_role author
dc.subject.none.fl_str_mv Categorical Adjunction
Lattice Ordered Abelian Groups
Local Order Units
topic Categorical Adjunction
Lattice Ordered Abelian Groups
Local Order Units
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let us write ℓGu f for the category whose objects are lattice-ordered abelian groups (l-groups for short) with a strong unit and finite prime spectrum endowed with a collection of Archimedean elements, one for each prime l-ideal, which satisfy certain properties, and whose arrows are l-homomorphisms with additional structure. In this paper we show that a functor which assigns to each object (A,û) ∈ ℓGu f the prime spectrum of A, and to each arrow f:(A,û)→(B,û) ∈ ℓGu f the naturally induced p-morphism, has a left adjoint.
Fil: Castiglioni, José Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: San Martín, Hernán Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Let us write ℓGu f for the category whose objects are lattice-ordered abelian groups (l-groups for short) with a strong unit and finite prime spectrum endowed with a collection of Archimedean elements, one for each prime l-ideal, which satisfy certain properties, and whose arrows are l-homomorphisms with additional structure. In this paper we show that a functor which assigns to each object (A,û) ∈ ℓGu f the prime spectrum of A, and to each arrow f:(A,û)→(B,û) ∈ ℓGu f the naturally induced p-morphism, has a left adjoint.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53628
Castiglioni, José Luis; San Martín, Hernán Javier; The left adjoint of Spec from a category of lattice-ordered groups; Elsevier Science; Journal of Applied Logic; 15; 5-2016; 1-15
1570-8683
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53628
identifier_str_mv Castiglioni, José Luis; San Martín, Hernán Javier; The left adjoint of Spec from a category of lattice-ordered groups; Elsevier Science; Journal of Applied Logic; 15; 5-2016; 1-15
1570-8683
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jal.2015.11.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1570868315000865
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613460129742848
score 13.070432