A maximum entropy approach for predicting epileptic tonic-clonic seizure
- Autores
- Martín, María Teresa; Plastino, Ángel Luis; Vampa, Victoria
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The development of methods for time series analysis and prediction has always been and continues to be an active area of research. In this work, we develop a technique for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic electroencephalographic (EEG) analysis, we show that appropriate information theory tools provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients with epilepsy.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Facultad de Ingeniería - Materia
-
Ciencias Exactas
Ingeniería
Maximum entropy
Pseudo-inverse approach
Tonic-clonic EEG transition - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85041
Ver los metadatos del registro completo
id |
SEDICI_5102dffba8cf7af5ed7b188b950dda76 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85041 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A maximum entropy approach for predicting epileptic tonic-clonic seizureMartín, María TeresaPlastino, Ángel LuisVampa, VictoriaCiencias ExactasIngenieríaMaximum entropyPseudo-inverse approachTonic-clonic EEG transitionThe development of methods for time series analysis and prediction has always been and continues to be an active area of research. In this work, we develop a technique for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic electroencephalographic (EEG) analysis, we show that appropriate information theory tools provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients with epilepsy.Facultad de Ciencias ExactasInstituto de Física La PlataFacultad de Ingeniería2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf4603-4611http://sedici.unlp.edu.ar/handle/10915/85041enginfo:eu-repo/semantics/altIdentifier/issn/1099-4300info:eu-repo/semantics/altIdentifier/doi/10.3390/e16084603info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:41Zoai:sedici.unlp.edu.ar:10915/85041Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:41.387SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
title |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
spellingShingle |
A maximum entropy approach for predicting epileptic tonic-clonic seizure Martín, María Teresa Ciencias Exactas Ingeniería Maximum entropy Pseudo-inverse approach Tonic-clonic EEG transition |
title_short |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
title_full |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
title_fullStr |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
title_full_unstemmed |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
title_sort |
A maximum entropy approach for predicting epileptic tonic-clonic seizure |
dc.creator.none.fl_str_mv |
Martín, María Teresa Plastino, Ángel Luis Vampa, Victoria |
author |
Martín, María Teresa |
author_facet |
Martín, María Teresa Plastino, Ángel Luis Vampa, Victoria |
author_role |
author |
author2 |
Plastino, Ángel Luis Vampa, Victoria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Ingeniería Maximum entropy Pseudo-inverse approach Tonic-clonic EEG transition |
topic |
Ciencias Exactas Ingeniería Maximum entropy Pseudo-inverse approach Tonic-clonic EEG transition |
dc.description.none.fl_txt_mv |
The development of methods for time series analysis and prediction has always been and continues to be an active area of research. In this work, we develop a technique for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic electroencephalographic (EEG) analysis, we show that appropriate information theory tools provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients with epilepsy. Facultad de Ciencias Exactas Instituto de Física La Plata Facultad de Ingeniería |
description |
The development of methods for time series analysis and prediction has always been and continues to be an active area of research. In this work, we develop a technique for modelling chaotic time series in parametric fashion. In the case of tonic-clonic epileptic electroencephalographic (EEG) analysis, we show that appropriate information theory tools provide valuable insights into the dynamics of neural activity. Our purpose is to demonstrate the feasibility of the maximum entropy principle to anticipate tonic-clonic seizure in patients with epilepsy. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85041 |
url |
http://sedici.unlp.edu.ar/handle/10915/85041 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1099-4300 info:eu-repo/semantics/altIdentifier/doi/10.3390/e16084603 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 4603-4611 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260362606411776 |
score |
13.13397 |