Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data
- Autores
- Rebollo Neira, Laura; Plastino, Ángel Luis
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A recursive approach for computing the q = 1/2 nonextensive maximum entropy distribution of the previously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the Lagrange multipliers so as to account for each new constraint.
Instituto de Física La Plata - Materia
-
Física
Joint entropy
Algorithm
Mathematical optimization
Mathematics
Joint quantum entropy
Binary entropy function
Maximum entropy thermodynamics
Maximum entropy probability distribution
Lagrange multiplier
Maximum entropy spectral estimation
Principle of maximum entropy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125907
Ver los metadatos del registro completo
id |
SEDICI_b19a1cea4f9827847af9fb13fec1a03a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125907 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant dataRebollo Neira, LauraPlastino, Ángel LuisFísicaJoint entropyAlgorithmMathematical optimizationMathematicsJoint quantum entropyBinary entropy functionMaximum entropy thermodynamicsMaximum entropy probability distributionLagrange multiplierMaximum entropy spectral estimationPrinciple of maximum entropyA recursive approach for computing the q = 1/2 nonextensive maximum entropy distribution of the previously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the Lagrange multipliers so as to account for each new constraint.Instituto de Física La Plata2002info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/125907enginfo:eu-repo/semantics/altIdentifier/issn/1063-651Xinfo:eu-repo/semantics/altIdentifier/issn/1095-3787info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.66.032102info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:19Zoai:sedici.unlp.edu.ar:10915/125907Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:19.805SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
title |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
spellingShingle |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data Rebollo Neira, Laura Física Joint entropy Algorithm Mathematical optimization Mathematics Joint quantum entropy Binary entropy function Maximum entropy thermodynamics Maximum entropy probability distribution Lagrange multiplier Maximum entropy spectral estimation Principle of maximum entropy |
title_short |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
title_full |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
title_fullStr |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
title_full_unstemmed |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
title_sort |
Recursive approach for constructing the q = 1/2 maximum entropy distribution from redundant data |
dc.creator.none.fl_str_mv |
Rebollo Neira, Laura Plastino, Ángel Luis |
author |
Rebollo Neira, Laura |
author_facet |
Rebollo Neira, Laura Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Joint entropy Algorithm Mathematical optimization Mathematics Joint quantum entropy Binary entropy function Maximum entropy thermodynamics Maximum entropy probability distribution Lagrange multiplier Maximum entropy spectral estimation Principle of maximum entropy |
topic |
Física Joint entropy Algorithm Mathematical optimization Mathematics Joint quantum entropy Binary entropy function Maximum entropy thermodynamics Maximum entropy probability distribution Lagrange multiplier Maximum entropy spectral estimation Principle of maximum entropy |
dc.description.none.fl_txt_mv |
A recursive approach for computing the q = 1/2 nonextensive maximum entropy distribution of the previously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the Lagrange multipliers so as to account for each new constraint. Instituto de Física La Plata |
description |
A recursive approach for computing the q = 1/2 nonextensive maximum entropy distribution of the previously introduced formalism for data subset selection is proposed. Such an approach is based on an iterative biorthogonalization technique, which allows for the incorporation of the Lagrange multipliers that determine the distribution to the workings of the algorithm devised for selecting relevant data subsets. This technique circumvents the necessity of inverting operators and yields a recursive procedure to appropriately modify the Lagrange multipliers so as to account for each new constraint. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125907 |
url |
http://sedici.unlp.edu.ar/handle/10915/125907 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1063-651X info:eu-repo/semantics/altIdentifier/issn/1095-3787 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.66.032102 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260521486647296 |
score |
13.13397 |