Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas
- Autores
- Calibio Giraldo, Ivon Yazarit
- Año de publicación
- 2024
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El tratamiento de heridas crónicas representa un desafío de salud global que implica elevados costos y afecta a millones de pacientes. La reducción de tiempos de cicatrización podría traducirse en un ahorro significativo para los sistemas de salud, además de mejorar la calidad de vida y seguridad del paciente (1). Este proyecto busca desarrollar un biomaterial antimicrobiano y biocompatible usando estructuras tipo amiloide formadas a partir de proteínas (2) e incorporando nanopartículas de plata (AgNPs), para reducir o impedir la adhesión bacteriana, mejorar el efecto de antibióticos y limitar la formación de biofilms microbianos. En esta etapa, se procuró recubrir superficies de dispositivos médicos para combatir infecciones.Se desarrolló un material proteico basado en agregados amiloides de albúmina (BSA). Estos se prepararon con ditiotreitol (DTT) a pH 7.4 y 37°C, para recubrir superficies de cloruro de polivinilo (PVC, usado en sondas y catéteres) y vidrio (modelo). La formación de agregados amiloides se confirmó mediante espectroscopía UV-visible y FTIR; las películas se caracterizaron con tinción Rojo Congo, microscopía de fuerza atómica (AFM) y confocal. Se analizó la estabilidad de las películas en medios mecánico y acuoso. Ensayos preliminares indican que los recubrimientos de agregados amiloides inhiben la adhesión bacteriana, generando un marcado efecto antibiofouling y aumentando el efecto antibiótico de vancomicina frente a Staphylococcus aureus. Sin embargo, la incorporación de AgNPs no mejoró el efecto antimicrobiano. Ensayos de biocompatibilidad con células HeLa demostraron que el recubrimiento no afectó la viabilidad celular ni promovió adhesión celular excesiva.En conclusión, el recubrimiento de agregados amiloides presenta una combinación prometedora de estabilidad mecánica, capacidad antimicrobiana y biocompatibilidad, sugiriendo su potencial aplicación en dispositivos médicos como tubos endotraqueales y cánulas para prevenir infecciones hospitalarias. En el futuro, se estudiará el efecto de añadir ácido hialurónico (HA) en las características de los hidrogeles híbridos HA/BSA.
Carrera: Quimica Lugar de trabajo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Organismo: CONICET Año de inicio de beca: 2021 Año de finalización de beca: 2026 Apellido, Nombre del Director/a/e: Schilardi, Patricia Apellido, Nombre del Codirector/a/e: Diaz, Carolina Lugar de desarrollo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Áreas de conocimiento: Química Tipo de investigación: Desarrollo
Facultad de Ciencias Exactas - Materia
-
Química
recubrimiento antimicrobiano
biofilms microbianos
nanomateriales
antimicrobial coating
microbial biofilms
nanomaterials - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/173320
Ver los metadatos del registro completo
id |
SEDICI_4bdf093672340ecab7809257d4db9fd2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/173320 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicasDesign and Development of a Hybrid Hydrogel of Hyaluronic Acid Embedded in an Amyloid Structure Matrix for the Control and Treatment of Chronic WoundsCalibio Giraldo, Ivon YazaritQuímicarecubrimiento antimicrobianobiofilms microbianosnanomaterialesantimicrobial coatingmicrobial biofilmsnanomaterialsEl tratamiento de heridas crónicas representa un desafío de salud global que implica elevados costos y afecta a millones de pacientes. La reducción de tiempos de cicatrización podría traducirse en un ahorro significativo para los sistemas de salud, además de mejorar la calidad de vida y seguridad del paciente (1). Este proyecto busca desarrollar un biomaterial antimicrobiano y biocompatible usando estructuras tipo amiloide formadas a partir de proteínas (2) e incorporando nanopartículas de plata (AgNPs), para reducir o impedir la adhesión bacteriana, mejorar el efecto de antibióticos y limitar la formación de biofilms microbianos. En esta etapa, se procuró recubrir superficies de dispositivos médicos para combatir infecciones.Se desarrolló un material proteico basado en agregados amiloides de albúmina (BSA). Estos se prepararon con ditiotreitol (DTT) a pH 7.4 y 37°C, para recubrir superficies de cloruro de polivinilo (PVC, usado en sondas y catéteres) y vidrio (modelo). La formación de agregados amiloides se confirmó mediante espectroscopía UV-visible y FTIR; las películas se caracterizaron con tinción Rojo Congo, microscopía de fuerza atómica (AFM) y confocal. Se analizó la estabilidad de las películas en medios mecánico y acuoso. Ensayos preliminares indican que los recubrimientos de agregados amiloides inhiben la adhesión bacteriana, generando un marcado efecto antibiofouling y aumentando el efecto antibiótico de vancomicina frente a Staphylococcus aureus. Sin embargo, la incorporación de AgNPs no mejoró el efecto antimicrobiano. Ensayos de biocompatibilidad con células HeLa demostraron que el recubrimiento no afectó la viabilidad celular ni promovió adhesión celular excesiva.En conclusión, el recubrimiento de agregados amiloides presenta una combinación prometedora de estabilidad mecánica, capacidad antimicrobiana y biocompatibilidad, sugiriendo su potencial aplicación en dispositivos médicos como tubos endotraqueales y cánulas para prevenir infecciones hospitalarias. En el futuro, se estudiará el efecto de añadir ácido hialurónico (HA) en las características de los hidrogeles híbridos HA/BSA.Carrera: Quimica Lugar de trabajo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Organismo: CONICET Año de inicio de beca: 2021 Año de finalización de beca: 2026 Apellido, Nombre del Director/a/e: Schilardi, Patricia Apellido, Nombre del Codirector/a/e: Diaz, Carolina Lugar de desarrollo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Áreas de conocimiento: Química Tipo de investigación: DesarrolloFacultad de Ciencias Exactas2024-11-20info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/173320spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:18:25Zoai:sedici.unlp.edu.ar:10915/173320Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:18:25.625SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas Design and Development of a Hybrid Hydrogel of Hyaluronic Acid Embedded in an Amyloid Structure Matrix for the Control and Treatment of Chronic Wounds |
title |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
spellingShingle |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas Calibio Giraldo, Ivon Yazarit Química recubrimiento antimicrobiano biofilms microbianos nanomateriales antimicrobial coating microbial biofilms nanomaterials |
title_short |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
title_full |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
title_fullStr |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
title_full_unstemmed |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
title_sort |
Diseño y desarrollo de un hidrogel híbrido de ácido hialurónico embebido en una matriz de estructura amiloide para el control y tratamiento de heridas crónicas |
dc.creator.none.fl_str_mv |
Calibio Giraldo, Ivon Yazarit |
author |
Calibio Giraldo, Ivon Yazarit |
author_facet |
Calibio Giraldo, Ivon Yazarit |
author_role |
author |
dc.subject.none.fl_str_mv |
Química recubrimiento antimicrobiano biofilms microbianos nanomateriales antimicrobial coating microbial biofilms nanomaterials |
topic |
Química recubrimiento antimicrobiano biofilms microbianos nanomateriales antimicrobial coating microbial biofilms nanomaterials |
dc.description.none.fl_txt_mv |
El tratamiento de heridas crónicas representa un desafío de salud global que implica elevados costos y afecta a millones de pacientes. La reducción de tiempos de cicatrización podría traducirse en un ahorro significativo para los sistemas de salud, además de mejorar la calidad de vida y seguridad del paciente (1). Este proyecto busca desarrollar un biomaterial antimicrobiano y biocompatible usando estructuras tipo amiloide formadas a partir de proteínas (2) e incorporando nanopartículas de plata (AgNPs), para reducir o impedir la adhesión bacteriana, mejorar el efecto de antibióticos y limitar la formación de biofilms microbianos. En esta etapa, se procuró recubrir superficies de dispositivos médicos para combatir infecciones.Se desarrolló un material proteico basado en agregados amiloides de albúmina (BSA). Estos se prepararon con ditiotreitol (DTT) a pH 7.4 y 37°C, para recubrir superficies de cloruro de polivinilo (PVC, usado en sondas y catéteres) y vidrio (modelo). La formación de agregados amiloides se confirmó mediante espectroscopía UV-visible y FTIR; las películas se caracterizaron con tinción Rojo Congo, microscopía de fuerza atómica (AFM) y confocal. Se analizó la estabilidad de las películas en medios mecánico y acuoso. Ensayos preliminares indican que los recubrimientos de agregados amiloides inhiben la adhesión bacteriana, generando un marcado efecto antibiofouling y aumentando el efecto antibiótico de vancomicina frente a Staphylococcus aureus. Sin embargo, la incorporación de AgNPs no mejoró el efecto antimicrobiano. Ensayos de biocompatibilidad con células HeLa demostraron que el recubrimiento no afectó la viabilidad celular ni promovió adhesión celular excesiva.En conclusión, el recubrimiento de agregados amiloides presenta una combinación prometedora de estabilidad mecánica, capacidad antimicrobiana y biocompatibilidad, sugiriendo su potencial aplicación en dispositivos médicos como tubos endotraqueales y cánulas para prevenir infecciones hospitalarias. En el futuro, se estudiará el efecto de añadir ácido hialurónico (HA) en las características de los hidrogeles híbridos HA/BSA. Carrera: Quimica Lugar de trabajo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Organismo: CONICET Año de inicio de beca: 2021 Año de finalización de beca: 2026 Apellido, Nombre del Director/a/e: Schilardi, Patricia Apellido, Nombre del Codirector/a/e: Diaz, Carolina Lugar de desarrollo: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Áreas de conocimiento: Química Tipo de investigación: Desarrollo Facultad de Ciencias Exactas |
description |
El tratamiento de heridas crónicas representa un desafío de salud global que implica elevados costos y afecta a millones de pacientes. La reducción de tiempos de cicatrización podría traducirse en un ahorro significativo para los sistemas de salud, además de mejorar la calidad de vida y seguridad del paciente (1). Este proyecto busca desarrollar un biomaterial antimicrobiano y biocompatible usando estructuras tipo amiloide formadas a partir de proteínas (2) e incorporando nanopartículas de plata (AgNPs), para reducir o impedir la adhesión bacteriana, mejorar el efecto de antibióticos y limitar la formación de biofilms microbianos. En esta etapa, se procuró recubrir superficies de dispositivos médicos para combatir infecciones.Se desarrolló un material proteico basado en agregados amiloides de albúmina (BSA). Estos se prepararon con ditiotreitol (DTT) a pH 7.4 y 37°C, para recubrir superficies de cloruro de polivinilo (PVC, usado en sondas y catéteres) y vidrio (modelo). La formación de agregados amiloides se confirmó mediante espectroscopía UV-visible y FTIR; las películas se caracterizaron con tinción Rojo Congo, microscopía de fuerza atómica (AFM) y confocal. Se analizó la estabilidad de las películas en medios mecánico y acuoso. Ensayos preliminares indican que los recubrimientos de agregados amiloides inhiben la adhesión bacteriana, generando un marcado efecto antibiofouling y aumentando el efecto antibiótico de vancomicina frente a Staphylococcus aureus. Sin embargo, la incorporación de AgNPs no mejoró el efecto antimicrobiano. Ensayos de biocompatibilidad con células HeLa demostraron que el recubrimiento no afectó la viabilidad celular ni promovió adhesión celular excesiva.En conclusión, el recubrimiento de agregados amiloides presenta una combinación prometedora de estabilidad mecánica, capacidad antimicrobiana y biocompatibilidad, sugiriendo su potencial aplicación en dispositivos médicos como tubos endotraqueales y cánulas para prevenir infecciones hospitalarias. En el futuro, se estudiará el efecto de añadir ácido hialurónico (HA) en las características de los hidrogeles híbridos HA/BSA. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-20 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/173320 |
url |
http://sedici.unlp.edu.ar/handle/10915/173320 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260690103959552 |
score |
13.13397 |