A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian
- Autores
- Acosta Rodriguez, Gabriel; Mastroberti Bersetche, Francisco Vicente; Borthagaray Peradotto, Juan Pablo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In Acosta etal. (2017), a complete n-dimensional finite element analysis of the homogeneous Dirichlet problem associated to a fractional Laplacian was presented. Here we provide a comprehensive and simple 2D MATLAB ® finite element code for such a problem. The code is accompanied with a basic discussion of the theory relevant in the context. The main program is written in about 80 lines and can be easily modified to deal with other kernels as well as with time dependent problems. The present work fills a gap by providing an input for a large number of mathematicians and scientists interested in numerical approximations of solutions of a large variety of problems involving nonlocal phenomena in two-dimensional space.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Mastroberti Bersetche, Francisco Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
FINITE ELEMENTS
FRACTIONAL LAPLACIAN
NONLOCAL OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55819
Ver los metadatos del registro completo
id |
CONICETDig_882a58affac3ca04f288c5b8d4f1835a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55819 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional LaplacianAcosta Rodriguez, GabrielMastroberti Bersetche, Francisco VicenteBorthagaray Peradotto, Juan PabloFINITE ELEMENTSFRACTIONAL LAPLACIANNONLOCAL OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In Acosta etal. (2017), a complete n-dimensional finite element analysis of the homogeneous Dirichlet problem associated to a fractional Laplacian was presented. Here we provide a comprehensive and simple 2D MATLAB ® finite element code for such a problem. The code is accompanied with a basic discussion of the theory relevant in the context. The main program is written in about 80 lines and can be easily modified to deal with other kernels as well as with time dependent problems. The present work fills a gap by providing an input for a large number of mathematicians and scientists interested in numerical approximations of solutions of a large variety of problems involving nonlocal phenomena in two-dimensional space.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Mastroberti Bersetche, Francisco Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaPergamon-Elsevier Science Ltd2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55819Acosta Rodriguez, Gabriel; Mastroberti Bersetche, Francisco Vicente; Borthagaray Peradotto, Juan Pablo; A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 74; 4; 8-2017; 784-8160898-1221CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0898122117303310info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2017.05.026info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:53Zoai:ri.conicet.gov.ar:11336/55819instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:54.173CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
title |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
spellingShingle |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian Acosta Rodriguez, Gabriel FINITE ELEMENTS FRACTIONAL LAPLACIAN NONLOCAL OPERATORS |
title_short |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
title_full |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
title_fullStr |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
title_full_unstemmed |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
title_sort |
A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Mastroberti Bersetche, Francisco Vicente Borthagaray Peradotto, Juan Pablo |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Mastroberti Bersetche, Francisco Vicente Borthagaray Peradotto, Juan Pablo |
author_role |
author |
author2 |
Mastroberti Bersetche, Francisco Vicente Borthagaray Peradotto, Juan Pablo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FINITE ELEMENTS FRACTIONAL LAPLACIAN NONLOCAL OPERATORS |
topic |
FINITE ELEMENTS FRACTIONAL LAPLACIAN NONLOCAL OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In Acosta etal. (2017), a complete n-dimensional finite element analysis of the homogeneous Dirichlet problem associated to a fractional Laplacian was presented. Here we provide a comprehensive and simple 2D MATLAB ® finite element code for such a problem. The code is accompanied with a basic discussion of the theory relevant in the context. The main program is written in about 80 lines and can be easily modified to deal with other kernels as well as with time dependent problems. The present work fills a gap by providing an input for a large number of mathematicians and scientists interested in numerical approximations of solutions of a large variety of problems involving nonlocal phenomena in two-dimensional space. Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Mastroberti Bersetche, Francisco Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
In Acosta etal. (2017), a complete n-dimensional finite element analysis of the homogeneous Dirichlet problem associated to a fractional Laplacian was presented. Here we provide a comprehensive and simple 2D MATLAB ® finite element code for such a problem. The code is accompanied with a basic discussion of the theory relevant in the context. The main program is written in about 80 lines and can be easily modified to deal with other kernels as well as with time dependent problems. The present work fills a gap by providing an input for a large number of mathematicians and scientists interested in numerical approximations of solutions of a large variety of problems involving nonlocal phenomena in two-dimensional space. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55819 Acosta Rodriguez, Gabriel; Mastroberti Bersetche, Francisco Vicente; Borthagaray Peradotto, Juan Pablo; A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 74; 4; 8-2017; 784-816 0898-1221 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55819 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Mastroberti Bersetche, Francisco Vicente; Borthagaray Peradotto, Juan Pablo; A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian; Pergamon-Elsevier Science Ltd; Computers & Mathematics With Applications (1987); 74; 4; 8-2017; 784-816 0898-1221 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0898122117303310 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2017.05.026 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980922719207424 |
score |
12.993085 |