Finite element approximations of the nonhomogeneous fractional Dirichlet problem
- Autores
- Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; Heuer, Norbert
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogue of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed both for the solution and for its nonlocal derivative. The method we propose requires that, as meshes are refined, the discrete problems be solved in a family of domains of growing diameter.
Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Heuer, Norbert. Pontificia Universidad Católica de Chile; Chile - Materia
-
FRACTIONAL LAPLACIAN
FINITE ELEMENTS
A PRIORI ERROR ESTIMATES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/116922
Ver los metadatos del registro completo
id |
CONICETDig_742157ca14f73fe6fe2ea982f6afde05 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/116922 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Finite element approximations of the nonhomogeneous fractional Dirichlet problemAcosta Rodriguez, GabrielBorthagaray Peradotto, Juan PabloHeuer, NorbertFRACTIONAL LAPLACIANFINITE ELEMENTSA PRIORI ERROR ESTIMATEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogue of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed both for the solution and for its nonlocal derivative. The method we propose requires that, as meshes are refined, the discrete problems be solved in a family of domains of growing diameter.Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Heuer, Norbert. Pontificia Universidad Católica de Chile; ChileOxford University Press2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116922Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; Heuer, Norbert; Finite element approximations of the nonhomogeneous fractional Dirichlet problem; Oxford University Press; Ima Journal Of Numerical Analysis; 39; 3; 5-2018; 1471–15010272-4979CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/dry023/4990927info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/dry023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:45Zoai:ri.conicet.gov.ar:11336/116922instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:45.359CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
title |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
spellingShingle |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem Acosta Rodriguez, Gabriel FRACTIONAL LAPLACIAN FINITE ELEMENTS A PRIORI ERROR ESTIMATES |
title_short |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
title_full |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
title_fullStr |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
title_full_unstemmed |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
title_sort |
Finite element approximations of the nonhomogeneous fractional Dirichlet problem |
dc.creator.none.fl_str_mv |
Acosta Rodriguez, Gabriel Borthagaray Peradotto, Juan Pablo Heuer, Norbert |
author |
Acosta Rodriguez, Gabriel |
author_facet |
Acosta Rodriguez, Gabriel Borthagaray Peradotto, Juan Pablo Heuer, Norbert |
author_role |
author |
author2 |
Borthagaray Peradotto, Juan Pablo Heuer, Norbert |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRACTIONAL LAPLACIAN FINITE ELEMENTS A PRIORI ERROR ESTIMATES |
topic |
FRACTIONAL LAPLACIAN FINITE ELEMENTS A PRIORI ERROR ESTIMATES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogue of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed both for the solution and for its nonlocal derivative. The method we propose requires that, as meshes are refined, the discrete problems be solved in a family of domains of growing diameter. Fil: Acosta Rodriguez, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Borthagaray Peradotto, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Heuer, Norbert. Pontificia Universidad Católica de Chile; Chile |
description |
We study finite element approximations of the nonhomogeneous Dirichlet problem for the fractional Laplacian. Our approach is based on weak imposition of the Dirichlet condition and incorporating a nonlocal analogue of the normal derivative as a Lagrange multiplier in the formulation of the problem. In order to obtain convergence orders for our scheme, regularity estimates are developed both for the solution and for its nonlocal derivative. The method we propose requires that, as meshes are refined, the discrete problems be solved in a family of domains of growing diameter. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/116922 Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; Heuer, Norbert; Finite element approximations of the nonhomogeneous fractional Dirichlet problem; Oxford University Press; Ima Journal Of Numerical Analysis; 39; 3; 5-2018; 1471–1501 0272-4979 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/116922 |
identifier_str_mv |
Acosta Rodriguez, Gabriel; Borthagaray Peradotto, Juan Pablo; Heuer, Norbert; Finite element approximations of the nonhomogeneous fractional Dirichlet problem; Oxford University Press; Ima Journal Of Numerical Analysis; 39; 3; 5-2018; 1471–1501 0272-4979 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/advance-article/doi/10.1093/imanum/dry023/4990927 info:eu-repo/semantics/altIdentifier/doi/10.1093/imanum/dry023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614411156717568 |
score |
13.070432 |