Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem

Autores
Fernandez, Natalia; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
Año de publicación
2001
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Evolutionary algorithms
hybridization
local search
Scheduling
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23409

id SEDICI_417bd51389754fa82b9904df603c7f73
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23409
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problemFernandez, NataliaSalto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasEvolutionary algorithmshybridizationlocal searchSchedulingOptimizationAlgorithmsARTIFICIAL INTELLIGENCEA new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23409enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:01Zoai:sedici.unlp.edu.ar:10915/23409Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:01.966SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
title Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
spellingShingle Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
Fernandez, Natalia
Ciencias Informáticas
Evolutionary algorithms
hybridization
local search
Scheduling
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE
title_short Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
title_full Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
title_fullStr Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
title_full_unstemmed Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
title_sort Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
dc.creator.none.fl_str_mv Fernandez, Natalia
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author Fernandez, Natalia
author_facet Fernandez, Natalia
Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author_role author
author2 Salto, Carolina
Alfonso, Hugo
Gallard, Raúl Hector
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Evolutionary algorithms
hybridization
local search
Scheduling
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE
topic Ciencias Informáticas
Evolutionary algorithms
hybridization
local search
Scheduling
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE
dc.description.none.fl_txt_mv A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.
publishDate 2001
dc.date.none.fl_str_mv 2001-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23409
url http://sedici.unlp.edu.ar/handle/10915/23409
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063907854090240
score 13.22299