Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem
- Autores
- Fernandez, Natalia; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.
Eje: Sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Evolutionary algorithms
hybridization
local search
Scheduling
Optimization
Algorithms
ARTIFICIAL INTELLIGENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23409
Ver los metadatos del registro completo
id |
SEDICI_417bd51389754fa82b9904df603c7f73 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23409 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problemFernandez, NataliaSalto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias InformáticasEvolutionary algorithmshybridizationlocal searchSchedulingOptimizationAlgorithmsARTIFICIAL INTELLIGENCEA new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here.Eje: Sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)2001-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23409enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:01Zoai:sedici.unlp.edu.ar:10915/23409Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:01.966SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
title |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
spellingShingle |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem Fernandez, Natalia Ciencias Informáticas Evolutionary algorithms hybridization local search Scheduling Optimization Algorithms ARTIFICIAL INTELLIGENCE |
title_short |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
title_full |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
title_fullStr |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
title_full_unstemmed |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
title_sort |
Incorporating tabu search for local search into evolutionary algorithms to solve the job shop scheduling problem |
dc.creator.none.fl_str_mv |
Fernandez, Natalia Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author |
Fernandez, Natalia |
author_facet |
Fernandez, Natalia Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Evolutionary algorithms hybridization local search Scheduling Optimization Algorithms ARTIFICIAL INTELLIGENCE |
topic |
Ciencias Informáticas Evolutionary algorithms hybridization local search Scheduling Optimization Algorithms ARTIFICIAL INTELLIGENCE |
dc.description.none.fl_txt_mv |
A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here. Eje: Sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
A new issue for combinatorial optimization problems is to incorporate local search into the framework of evolutionary algorithms, leading to hybrid evolutionary algorithms. With the hybrid approach, evolutionary algorithms are used to perform global exploration among population while other heuristic methods are used to perform local exploitation around chromosomes. Due to the complementary properties of evolutionary algorithms and conventional heuristics, the hybrid approach often outperforms either method operating alone. When designing hybrid evolutionary algorithm (HEA), a fundamental principle is to hybridize where possible. This paper aims at developing powerful HEA to find high quality sub-optimal solutions for the job shop scheduling problem through tabu search (TS), an advanced local search meta-heuristic. Experiments of such a hybrid algorithm are carried out on different benchmark. Analysis of the behavior of the algorithm sheds light on ways to further improvement and are discussed here. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23409 |
url |
http://sedici.unlp.edu.ar/handle/10915/23409 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063907854090240 |
score |
13.22299 |