Comment on "Quantum Kaniadakis entropy under projective measurement"

Autores
Bosyk, Gustavo Martín; Zozor, Steeve; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
Instituto de Física La Plata
Materia
Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/95344

id SEDICI_40343541446f3c90eec378a712b44b36
oai_identifier_str oai:sedici.unlp.edu.ar:10915/95344
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Comment on "Quantum Kaniadakis entropy under projective measurement"Bosyk, Gustavo MartínZozor, SteeveHolik, Federico HernánPortesi, Mariela AdelinaLamberti, Pedro WalterFísicaCiencias ExactasGeneralized entropiesSchur-concavityMajorizationWe comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.Instituto de Física La Plata2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf261031-261032http://sedici.unlp.edu.ar/handle/10915/95344enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/70690info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103info:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103info:eu-repo/semantics/altIdentifier/hdl/11336/70690info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:36Zoai:sedici.unlp.edu.ar:10915/95344Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:36.445SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Comment on "Quantum Kaniadakis entropy under projective measurement"
title Comment on "Quantum Kaniadakis entropy under projective measurement"
spellingShingle Comment on "Quantum Kaniadakis entropy under projective measurement"
Bosyk, Gustavo Martín
Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
title_short Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full Comment on "Quantum Kaniadakis entropy under projective measurement"
title_fullStr Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full_unstemmed Comment on "Quantum Kaniadakis entropy under projective measurement"
title_sort Comment on "Quantum Kaniadakis entropy under projective measurement"
dc.creator.none.fl_str_mv Bosyk, Gustavo Martín
Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author Bosyk, Gustavo Martín
author_facet Bosyk, Gustavo Martín
Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author_role author
author2 Zozor, Steeve
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
topic Física
Ciencias Exactas
Generalized entropies
Schur-concavity
Majorization
dc.description.none.fl_txt_mv We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
Instituto de Física La Plata
description We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/95344
url http://sedici.unlp.edu.ar/handle/10915/95344
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/70690
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103
info:eu-repo/semantics/altIdentifier/issn/1539-3755
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103
info:eu-repo/semantics/altIdentifier/hdl/11336/70690
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
261031-261032
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260407918526464
score 13.13397