Sequences of resource monotones from modular Hamiltonian polynomials
- Autores
- Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: de Boer, Jan. University of Amsterdam; Países Bajos
Fil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; Alemania
Fil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; Finlandia
Fil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa); - Materia
-
QUANTUM INFORMATION
ENTANGLEMENT MONOTONE
MODULAR HAMILTONIAN
SCHUR CONCAVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/249612
Ver los metadatos del registro completo
id |
CONICETDig_387341d4d289f1b3d7fa452c526a19a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/249612 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Sequences of resource monotones from modular Hamiltonian polynomialsArias, Raúl Eduardode Boer, JanDi Giulio, GiuseppeKeski Vakkuri, EskoTonni, ErikQUANTUM INFORMATIONENTANGLEMENT MONOTONEMODULAR HAMILTONIANSCHUR CONCAVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: de Boer, Jan. University of Amsterdam; Países BajosFil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; AlemaniaFil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; FinlandiaFil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa);American Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249612Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-262643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.5.043082info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.5.043082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:57Zoai:ri.conicet.gov.ar:11336/249612instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:58.213CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Sequences of resource monotones from modular Hamiltonian polynomials |
title |
Sequences of resource monotones from modular Hamiltonian polynomials |
spellingShingle |
Sequences of resource monotones from modular Hamiltonian polynomials Arias, Raúl Eduardo QUANTUM INFORMATION ENTANGLEMENT MONOTONE MODULAR HAMILTONIAN SCHUR CONCAVITY |
title_short |
Sequences of resource monotones from modular Hamiltonian polynomials |
title_full |
Sequences of resource monotones from modular Hamiltonian polynomials |
title_fullStr |
Sequences of resource monotones from modular Hamiltonian polynomials |
title_full_unstemmed |
Sequences of resource monotones from modular Hamiltonian polynomials |
title_sort |
Sequences of resource monotones from modular Hamiltonian polynomials |
dc.creator.none.fl_str_mv |
Arias, Raúl Eduardo de Boer, Jan Di Giulio, Giuseppe Keski Vakkuri, Esko Tonni, Erik |
author |
Arias, Raúl Eduardo |
author_facet |
Arias, Raúl Eduardo de Boer, Jan Di Giulio, Giuseppe Keski Vakkuri, Esko Tonni, Erik |
author_role |
author |
author2 |
de Boer, Jan Di Giulio, Giuseppe Keski Vakkuri, Esko Tonni, Erik |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
QUANTUM INFORMATION ENTANGLEMENT MONOTONE MODULAR HAMILTONIAN SCHUR CONCAVITY |
topic |
QUANTUM INFORMATION ENTANGLEMENT MONOTONE MODULAR HAMILTONIAN SCHUR CONCAVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain. Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: de Boer, Jan. University of Amsterdam; Países Bajos Fil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; Alemania Fil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; Finlandia Fil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa); |
description |
We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/249612 Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-26 2643-1564 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/249612 |
identifier_str_mv |
Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-26 2643-1564 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.5.043082 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.5.043082 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980368099049472 |
score |
12.993085 |