Sequences of resource monotones from modular Hamiltonian polynomials

Autores
Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: de Boer, Jan. University of Amsterdam; Países Bajos
Fil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; Alemania
Fil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; Finlandia
Fil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa);
Materia
QUANTUM INFORMATION
ENTANGLEMENT MONOTONE
MODULAR HAMILTONIAN
SCHUR CONCAVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/249612

id CONICETDig_387341d4d289f1b3d7fa452c526a19a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/249612
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sequences of resource monotones from modular Hamiltonian polynomialsArias, Raúl Eduardode Boer, JanDi Giulio, GiuseppeKeski Vakkuri, EskoTonni, ErikQUANTUM INFORMATIONENTANGLEMENT MONOTONEMODULAR HAMILTONIANSCHUR CONCAVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: de Boer, Jan. University of Amsterdam; Países BajosFil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; AlemaniaFil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; FinlandiaFil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa);American Physical Society2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/249612Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-262643-1564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.5.043082info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.5.043082info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:57Zoai:ri.conicet.gov.ar:11336/249612instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:58.213CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sequences of resource monotones from modular Hamiltonian polynomials
title Sequences of resource monotones from modular Hamiltonian polynomials
spellingShingle Sequences of resource monotones from modular Hamiltonian polynomials
Arias, Raúl Eduardo
QUANTUM INFORMATION
ENTANGLEMENT MONOTONE
MODULAR HAMILTONIAN
SCHUR CONCAVITY
title_short Sequences of resource monotones from modular Hamiltonian polynomials
title_full Sequences of resource monotones from modular Hamiltonian polynomials
title_fullStr Sequences of resource monotones from modular Hamiltonian polynomials
title_full_unstemmed Sequences of resource monotones from modular Hamiltonian polynomials
title_sort Sequences of resource monotones from modular Hamiltonian polynomials
dc.creator.none.fl_str_mv Arias, Raúl Eduardo
de Boer, Jan
Di Giulio, Giuseppe
Keski Vakkuri, Esko
Tonni, Erik
author Arias, Raúl Eduardo
author_facet Arias, Raúl Eduardo
de Boer, Jan
Di Giulio, Giuseppe
Keski Vakkuri, Esko
Tonni, Erik
author_role author
author2 de Boer, Jan
Di Giulio, Giuseppe
Keski Vakkuri, Esko
Tonni, Erik
author2_role author
author
author
author
dc.subject.none.fl_str_mv QUANTUM INFORMATION
ENTANGLEMENT MONOTONE
MODULAR HAMILTONIAN
SCHUR CONCAVITY
topic QUANTUM INFORMATION
ENTANGLEMENT MONOTONE
MODULAR HAMILTONIAN
SCHUR CONCAVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: de Boer, Jan. University of Amsterdam; Países Bajos
Fil: Di Giulio, Giuseppe. Institute For Theoretical Physics And Astrophysics; Alemania
Fil: Keski Vakkuri, Esko. University Of Helsinki. Faculty Of Science. Department Of Physics.; Finlandia
Fil: Tonni, Erik. Scuola Internazionale Superiore Di Studi Avanzati (sissa);
description We introduce two infinite sequences of entanglement monotones, which are constructed from expectation values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative quantifiers that are monotonic in more general processes, namely those involving so-called σ majorization with respect to a fixed point full rank state σ; such quantifiers are called resource monotones. As an application to thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs of states in discretized theories at criticality and study how majorization depends on the size of the bipartition with respect to the size of the entire chain.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/249612
Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-26
2643-1564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/249612
identifier_str_mv Arias, Raúl Eduardo; de Boer, Jan; Di Giulio, Giuseppe; Keski Vakkuri, Esko; Tonni, Erik; Sequences of resource monotones from modular Hamiltonian polynomials; American Physical Society; Physical Review Research; 5; 4; 10-2023; 043082, 1-26
2643-1564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.5.043082
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevResearch.5.043082
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980368099049472
score 12.993085