Comment on "Quantum Kaniadakis entropy under projective measurement"

Autores
Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Zozor, S.. Laboratoire Grenoblois d’Image; Francia
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Materia
GENERALIZED ENTROPIES
SCHUR-CONCAVITY
MAJORIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70690

id CONICETDig_aca22db88c1962032ecdc9bc4712d5bd
oai_identifier_str oai:ri.conicet.gov.ar:11336/70690
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comment on "Quantum Kaniadakis entropy under projective measurement"Bosyk, Gustavo MartinZozor, S.Holik, Federico HernánPortesi, Mariela AdelinaLamberti, Pedro WalterGENERALIZED ENTROPIESSCHUR-CONCAVITYMAJORIZATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Zozor, S.. Laboratoire Grenoblois d’Image; FranciaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Physical Society2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70690Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-2610321539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:00Zoai:ri.conicet.gov.ar:11336/70690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:00.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comment on "Quantum Kaniadakis entropy under projective measurement"
title Comment on "Quantum Kaniadakis entropy under projective measurement"
spellingShingle Comment on "Quantum Kaniadakis entropy under projective measurement"
Bosyk, Gustavo Martin
GENERALIZED ENTROPIES
SCHUR-CONCAVITY
MAJORIZATION
title_short Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full Comment on "Quantum Kaniadakis entropy under projective measurement"
title_fullStr Comment on "Quantum Kaniadakis entropy under projective measurement"
title_full_unstemmed Comment on "Quantum Kaniadakis entropy under projective measurement"
title_sort Comment on "Quantum Kaniadakis entropy under projective measurement"
dc.creator.none.fl_str_mv Bosyk, Gustavo Martin
Zozor, S.
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author Bosyk, Gustavo Martin
author_facet Bosyk, Gustavo Martin
Zozor, S.
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author_role author
author2 Zozor, S.
Holik, Federico Hernán
Portesi, Mariela Adelina
Lamberti, Pedro Walter
author2_role author
author
author
author
dc.subject.none.fl_str_mv GENERALIZED ENTROPIES
SCHUR-CONCAVITY
MAJORIZATION
topic GENERALIZED ENTROPIES
SCHUR-CONCAVITY
MAJORIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Zozor, S.. Laboratoire Grenoblois d’Image; Francia
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
description We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70690
Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-261032
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70690
identifier_str_mv Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-261032
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614390885646336
score 13.070432