Comment on "Quantum Kaniadakis entropy under projective measurement"
- Autores
- Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.
Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Zozor, S.. Laboratoire Grenoblois d’Image; Francia
Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina - Materia
-
GENERALIZED ENTROPIES
SCHUR-CONCAVITY
MAJORIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70690
Ver los metadatos del registro completo
id |
CONICETDig_aca22db88c1962032ecdc9bc4712d5bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70690 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comment on "Quantum Kaniadakis entropy under projective measurement"Bosyk, Gustavo MartinZozor, S.Holik, Federico HernánPortesi, Mariela AdelinaLamberti, Pedro WalterGENERALIZED ENTROPIESSCHUR-CONCAVITYMAJORIZATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved.Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Zozor, S.. Laboratoire Grenoblois d’Image; FranciaFil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaAmerican Physical Society2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70690Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-2610321539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:00Zoai:ri.conicet.gov.ar:11336/70690instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:00.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
title |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
spellingShingle |
Comment on "Quantum Kaniadakis entropy under projective measurement" Bosyk, Gustavo Martin GENERALIZED ENTROPIES SCHUR-CONCAVITY MAJORIZATION |
title_short |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
title_full |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
title_fullStr |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
title_full_unstemmed |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
title_sort |
Comment on "Quantum Kaniadakis entropy under projective measurement" |
dc.creator.none.fl_str_mv |
Bosyk, Gustavo Martin Zozor, S. Holik, Federico Hernán Portesi, Mariela Adelina Lamberti, Pedro Walter |
author |
Bosyk, Gustavo Martin |
author_facet |
Bosyk, Gustavo Martin Zozor, S. Holik, Federico Hernán Portesi, Mariela Adelina Lamberti, Pedro Walter |
author_role |
author |
author2 |
Zozor, S. Holik, Federico Hernán Portesi, Mariela Adelina Lamberti, Pedro Walter |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
GENERALIZED ENTROPIES SCHUR-CONCAVITY MAJORIZATION |
topic |
GENERALIZED ENTROPIES SCHUR-CONCAVITY MAJORIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved. Fil: Bosyk, Gustavo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Zozor, S.. Laboratoire Grenoblois d’Image; Francia Fil: Holik, Federico Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Portesi, Mariela Adelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Lamberti, Pedro Walter. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina |
description |
We comment on the main result given by Ourabah et al. [Phys. Rev. E 92, 032114 (2015)PLEEE81539-375510.1103/PhysRevE.92.032114], noting that it can be derived as a special case of the more general study that we have provided in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5]. Our proof of the nondecreasing character under projective measurements of so-called generalized (h,φ) entropies (that comprise the Kaniadakis family as a particular case) has been based on majorization and Schur-concavity arguments. As a consequence, we have obtained that this property is obviously satisfied by Kaniadakis entropy but at the same time is fulfilled by all entropies preserving majorization. In addition, we have seen that our result holds for any bistochastic map, being a projective measurement a particular case. We argue here that looking at these facts from the point of view given in [Quantum Inf Process 15, 3393 (2016)10.1007/s11128-016-1329-5] not only simplifies the demonstrations but allows for a deeper understanding of the entropic properties involved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70690 Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-261032 1539-3755 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70690 |
identifier_str_mv |
Bosyk, Gustavo Martin; Zozor, S.; Holik, Federico Hernán; Portesi, Mariela Adelina; Lamberti, Pedro Walter; Comment on "Quantum Kaniadakis entropy under projective measurement"; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 94; 2; 8-2016; 261031-261032 1539-3755 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.94.026103 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.94.026103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614390885646336 |
score |
13.070432 |