Learning probabilistic models of biological systems using active inference with belief propagation

Autores
Martínez, Ernesto C.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Active inference
Bayesian inference
Probabil-istic modeling
Biological systems
Reinforcement learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140157

id SEDICI_37843632d49c12f2e81a5f911f6ae013
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140157
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Learning probabilistic models of biological systems using active inference with belief propagationMartínez, Ernesto C.Ciencias InformáticasActive inferenceBayesian inferenceProbabil-istic modelingBiological systemsReinforcement learningIn this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf94-107http://sedici.unlp.edu.ar/handle/10915/140157enginfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:34Zoai:sedici.unlp.edu.ar:10915/140157Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:34.441SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Learning probabilistic models of biological systems using active inference with belief propagation
title Learning probabilistic models of biological systems using active inference with belief propagation
spellingShingle Learning probabilistic models of biological systems using active inference with belief propagation
Martínez, Ernesto C.
Ciencias Informáticas
Active inference
Bayesian inference
Probabil-istic modeling
Biological systems
Reinforcement learning
title_short Learning probabilistic models of biological systems using active inference with belief propagation
title_full Learning probabilistic models of biological systems using active inference with belief propagation
title_fullStr Learning probabilistic models of biological systems using active inference with belief propagation
title_full_unstemmed Learning probabilistic models of biological systems using active inference with belief propagation
title_sort Learning probabilistic models of biological systems using active inference with belief propagation
dc.creator.none.fl_str_mv Martínez, Ernesto C.
author Martínez, Ernesto C.
author_facet Martínez, Ernesto C.
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Active inference
Bayesian inference
Probabil-istic modeling
Biological systems
Reinforcement learning
topic Ciencias Informáticas
Active inference
Bayesian inference
Probabil-istic modeling
Biological systems
Reinforcement learning
dc.description.none.fl_txt_mv In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.
Sociedad Argentina de Informática e Investigación Operativa
description In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140157
url http://sedici.unlp.edu.ar/handle/10915/140157
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2683-8966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.format.none.fl_str_mv application/pdf
94-107
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616234695393280
score 13.070432