Learning probabilistic models of biological systems using active inference with belief propagation
- Autores
- Martínez, Ernesto C.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Active inference
Bayesian inference
Probabil-istic modeling
Biological systems
Reinforcement learning - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/140157
Ver los metadatos del registro completo
id |
SEDICI_37843632d49c12f2e81a5f911f6ae013 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/140157 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Learning probabilistic models of biological systems using active inference with belief propagationMartínez, Ernesto C.Ciencias InformáticasActive inferenceBayesian inferenceProbabil-istic modelingBiological systemsReinforcement learningIn this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf94-107http://sedici.unlp.edu.ar/handle/10915/140157enginfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:35:34Zoai:sedici.unlp.edu.ar:10915/140157Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:35:34.441SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Learning probabilistic models of biological systems using active inference with belief propagation |
title |
Learning probabilistic models of biological systems using active inference with belief propagation |
spellingShingle |
Learning probabilistic models of biological systems using active inference with belief propagation Martínez, Ernesto C. Ciencias Informáticas Active inference Bayesian inference Probabil-istic modeling Biological systems Reinforcement learning |
title_short |
Learning probabilistic models of biological systems using active inference with belief propagation |
title_full |
Learning probabilistic models of biological systems using active inference with belief propagation |
title_fullStr |
Learning probabilistic models of biological systems using active inference with belief propagation |
title_full_unstemmed |
Learning probabilistic models of biological systems using active inference with belief propagation |
title_sort |
Learning probabilistic models of biological systems using active inference with belief propagation |
dc.creator.none.fl_str_mv |
Martínez, Ernesto C. |
author |
Martínez, Ernesto C. |
author_facet |
Martínez, Ernesto C. |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Active inference Bayesian inference Probabil-istic modeling Biological systems Reinforcement learning |
topic |
Ciencias Informáticas Active inference Bayesian inference Probabil-istic modeling Biological systems Reinforcement learning |
dc.description.none.fl_txt_mv |
In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this work, the normative framework of active inference is integrated with belief propagation for inverting a probabilistic causal model using data generated from planned interactions between a Bayesian modeling agent and a biological system. Thompson sampling of parameter distributions is used to estimate the free energy of the expected future when beliefs about beliefs are rolled over a planning horizon. Learning a probabilistic model for maximizing biomass production in the well-known Baker’s yeast example is used as an ex-ample. The prior parameter distributions in the system model of a fed-batch cultivation are updated as new observations are obtained. Planned action sequences aim to excite the yeast metabolism by introducing changes in the feed rate of two nutrients (glucose and nitrogen). Results obtained demonstrate that by maximizing the model evidence, the proposed approach constraints biological system dynamics to relevant trajectories for improved parametric precision in the preferred region of physiological states that favor biomass productivity. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/140157 |
url |
http://sedici.unlp.edu.ar/handle/10915/140157 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2683-8966 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 94-107 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616234695393280 |
score |
13.070432 |