TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R

Autores
Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.
Fil: Landfried, Gustavo Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Materia
Learning
Skill
Bayesian inference
Gaming
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/264479

id CONICETDig_0e8909ef3c242e4b3897e00deaef694f
oai_identifier_str oai:ri.conicet.gov.ar:11336/264479
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and RLandfried, Gustavo AndrésMocskos, Esteban EduardoLearningSkillBayesian inferenceGaminghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.Fil: Landfried, Gustavo Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaJournal Statistical Software2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/264479Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-411548-7660CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.18637/jss.v112.i06info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:17:11Zoai:ri.conicet.gov.ar:11336/264479instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:17:12.066CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
title TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
spellingShingle TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
Landfried, Gustavo Andrés
Learning
Skill
Bayesian inference
Gaming
title_short TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
title_full TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
title_fullStr TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
title_full_unstemmed TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
title_sort TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R
dc.creator.none.fl_str_mv Landfried, Gustavo Andrés
Mocskos, Esteban Eduardo
author Landfried, Gustavo Andrés
author_facet Landfried, Gustavo Andrés
Mocskos, Esteban Eduardo
author_role author
author2 Mocskos, Esteban Eduardo
author2_role author
dc.subject.none.fl_str_mv Learning
Skill
Bayesian inference
Gaming
topic Learning
Skill
Bayesian inference
Gaming
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.
Fil: Landfried, Gustavo Andrés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mocskos, Esteban Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
description Knowing how individual abilities change is essential in a wide range of activities. The most widely used skill estimators in industry and academia (such as Elo and TrueSkill) propagate information in only one direction, from the past to the future, preventing them from obtaining reliable initial estimates and ensuring comparability between estimates distant in time and space. In contrast, the model TrueSkill Through Time (TTT) propagates all historical information throughout a single causal network, providing estimates with low uncertainty at any given time, enabling reliable initial skill estimates, and ensuring historical comparability. Although the TTT model was published more than a decade ago, it was not available until now in the programming languages with the largest communities. Here we offer the first software for Julia, Python, and R, accompanied by a detailed overview for the general public and an in-depth scientific explanation. After illustrating its basic mode of use, we show how to estimate the learning curves of historical players of the Association of Tennis Professionals. Analytical approximation methods and message-passing algorithms allow inference to be solved efficiently using any low-end computer, even in causal networks with millions of nodes and irregular structures.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/264479
Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-41
1548-7660
CONICET Digital
CONICET
url http://hdl.handle.net/11336/264479
identifier_str_mv Landfried, Gustavo Andrés; Mocskos, Esteban Eduardo; TrueSkill Through Time: Reliable Initial Skill Estimates and Historical Comparability with Julia , Python , and R; Journal Statistical Software; Journal Of Statistical Software; 112; 6; 4-2025; 1-41
1548-7660
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.18637/jss.v112.i06
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Journal Statistical Software
publisher.none.fl_str_mv Journal Statistical Software
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614122763714560
score 13.070432