Faster Bayesian inference with neural network bundles and new results for f ( R ) models

Autores
Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.
Fil: Chantada, Augusto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Protopapas, Pavlos. John A. Paulson School Of Engineering & Applied Sciences ; Harvard University;
Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
cosmology
neural networks
bayesian inference
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/258783

id CONICETDig_d348de8d2dfe0601f602965be77e935b
oai_identifier_str oai:ri.conicet.gov.ar:11336/258783
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Faster Bayesian inference with neural network bundles and new results for f ( R ) modelsChantada, Augusto TomásLandau, Susana JudithProtopapas, PavlosScoccola, Claudia GracielaGarraffo, Ceciliacosmologyneural networksbayesian inferencehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.Fil: Chantada, Augusto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Protopapas, Pavlos. John A. Paulson School Of Engineering & Applied Sciences ; Harvard University;Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Physical Society2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/258783Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Faster Bayesian inference with neural network bundles and new results for f ( R ) models; American Physical Society; Physical Review D; 109; 12; 6-2024; 1-142470-00102470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.109.123514info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.109.123514info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:04Zoai:ri.conicet.gov.ar:11336/258783instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:04.711CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Faster Bayesian inference with neural network bundles and new results for f ( R ) models
title Faster Bayesian inference with neural network bundles and new results for f ( R ) models
spellingShingle Faster Bayesian inference with neural network bundles and new results for f ( R ) models
Chantada, Augusto Tomás
cosmology
neural networks
bayesian inference
title_short Faster Bayesian inference with neural network bundles and new results for f ( R ) models
title_full Faster Bayesian inference with neural network bundles and new results for f ( R ) models
title_fullStr Faster Bayesian inference with neural network bundles and new results for f ( R ) models
title_full_unstemmed Faster Bayesian inference with neural network bundles and new results for f ( R ) models
title_sort Faster Bayesian inference with neural network bundles and new results for f ( R ) models
dc.creator.none.fl_str_mv Chantada, Augusto Tomás
Landau, Susana Judith
Protopapas, Pavlos
Scoccola, Claudia Graciela
Garraffo, Cecilia
author Chantada, Augusto Tomás
author_facet Chantada, Augusto Tomás
Landau, Susana Judith
Protopapas, Pavlos
Scoccola, Claudia Graciela
Garraffo, Cecilia
author_role author
author2 Landau, Susana Judith
Protopapas, Pavlos
Scoccola, Claudia Graciela
Garraffo, Cecilia
author2_role author
author
author
author
dc.subject.none.fl_str_mv cosmology
neural networks
bayesian inference
topic cosmology
neural networks
bayesian inference
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.
Fil: Chantada, Augusto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Protopapas, Pavlos. John A. Paulson School Of Engineering & Applied Sciences ; Harvard University;
Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/258783
Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Faster Bayesian inference with neural network bundles and new results for f ( R ) models; American Physical Society; Physical Review D; 109; 12; 6-2024; 1-14
2470-0010
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/258783
identifier_str_mv Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Faster Bayesian inference with neural network bundles and new results for f ( R ) models; American Physical Society; Physical Review D; 109; 12; 6-2024; 1-14
2470-0010
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.109.123514
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.109.123514
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269071618342912
score 13.13397