Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators
- Autores
- Messina, Francisco; Cernuschi-Frías, Bruno
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
ICA
Algorithm
Batch and Adaptive MMSE Estimators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123933
Ver los metadatos del registro completo
id |
SEDICI_299debb971ad059cd0d5318240d3818e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123933 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE EstimatorsMessina, FranciscoCernuschi-Frías, BrunoCiencias InformáticasICAAlgorithmBatch and Adaptive MMSE EstimatorsAll the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf240-251http://sedici.unlp.edu.ar/handle/10915/123933enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/21_AST_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:43Zoai:sedici.unlp.edu.ar:10915/123933Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:43.479SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
title |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
spellingShingle |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators Messina, Francisco Ciencias Informáticas ICA Algorithm Batch and Adaptive MMSE Estimators |
title_short |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
title_full |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
title_fullStr |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
title_full_unstemmed |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
title_sort |
Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators |
dc.creator.none.fl_str_mv |
Messina, Francisco Cernuschi-Frías, Bruno |
author |
Messina, Francisco |
author_facet |
Messina, Francisco Cernuschi-Frías, Bruno |
author_role |
author |
author2 |
Cernuschi-Frías, Bruno |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas ICA Algorithm Batch and Adaptive MMSE Estimators |
topic |
Ciencias Informáticas ICA Algorithm Batch and Adaptive MMSE Estimators |
dc.description.none.fl_txt_mv |
All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement. Sociedad Argentina de Informática e Investigación Operativa |
description |
All the algorithms for ICA require high-order statistics to estimate the independent components. This is because second-order information is insufficient to assess that two random variables are independent of each other. It is known that the robustness of the high-order sample estimators is poor, meaning that a few outliers can change dramatically its value. In this paper, we generalize the alternative robust statistics for moments and cumulants introduced by Welling presenting the MMSE-robust moments. Then we present a batch and adaptive versions of an algorithm for estimating the parameters that define the estimator. Finally, we modify two FastICA algorithms of ICA based on kurtosis and negentropy to apply the MMSE robust estimators and show some experiments with supergaussian sources to demonstrate the improvement. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123933 |
url |
http://sedici.unlp.edu.ar/handle/10915/123933 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/21_AST_2012.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 240-251 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616175948922880 |
score |
13.070432 |