Robust Estimators of the Generalized Log-Gamma Distribution
- Autores
- Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.
Fil: Agostinelli, Claudio. Universita' Ca' Foscari Di Venezia; Italia
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Minimum Quantile Distance Estimators
Τ - Estimators
Weighted Likelihood Estimators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30647
Ver los metadatos del registro completo
id |
CONICETDig_ddd97cf95aab56d151e555df45d153da |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30647 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust Estimators of the Generalized Log-Gamma DistributionAgostinelli, ClaudioMarazzi, Alfio NataleYohai, Victor JaimeMinimum Quantile Distance EstimatorsΤ - EstimatorsWeighted Likelihood Estimatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.Fil: Agostinelli, Claudio. Universita' Ca' Foscari Di Venezia; ItaliaFil: Marazzi, Alfio Natale. Universite de Lausanne; SuizaFil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor & Francis2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30647Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust Estimators of the Generalized Log-Gamma Distribution; Taylor & Francis; Technometrics; 56; 1; 7-2013; 92-1010040-1706CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00401706.2013.818578info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00401706.2013.818578info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:43Zoai:ri.conicet.gov.ar:11336/30647instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:44.105CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust Estimators of the Generalized Log-Gamma Distribution |
title |
Robust Estimators of the Generalized Log-Gamma Distribution |
spellingShingle |
Robust Estimators of the Generalized Log-Gamma Distribution Agostinelli, Claudio Minimum Quantile Distance Estimators Τ - Estimators Weighted Likelihood Estimators |
title_short |
Robust Estimators of the Generalized Log-Gamma Distribution |
title_full |
Robust Estimators of the Generalized Log-Gamma Distribution |
title_fullStr |
Robust Estimators of the Generalized Log-Gamma Distribution |
title_full_unstemmed |
Robust Estimators of the Generalized Log-Gamma Distribution |
title_sort |
Robust Estimators of the Generalized Log-Gamma Distribution |
dc.creator.none.fl_str_mv |
Agostinelli, Claudio Marazzi, Alfio Natale Yohai, Victor Jaime |
author |
Agostinelli, Claudio |
author_facet |
Agostinelli, Claudio Marazzi, Alfio Natale Yohai, Victor Jaime |
author_role |
author |
author2 |
Marazzi, Alfio Natale Yohai, Victor Jaime |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Minimum Quantile Distance Estimators Τ - Estimators Weighted Likelihood Estimators |
topic |
Minimum Quantile Distance Estimators Τ - Estimators Weighted Likelihood Estimators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online. Fil: Agostinelli, Claudio. Universita' Ca' Foscari Di Venezia; Italia Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30647 Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust Estimators of the Generalized Log-Gamma Distribution; Taylor & Francis; Technometrics; 56; 1; 7-2013; 92-101 0040-1706 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30647 |
identifier_str_mv |
Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust Estimators of the Generalized Log-Gamma Distribution; Taylor & Francis; Technometrics; 56; 1; 7-2013; 92-101 0040-1706 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/00401706.2013.818578 info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00401706.2013.818578 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269049994608640 |
score |
13.13397 |