Application of Affine Estimators to Single Tone Frequency Estimation
- Autores
- Gama, Fernando; Casaglia, Daniel; Cernuschi-Frías, Bruno
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Affine estimation has emerged as a promising technique to reduce the mean squared error (MSE) between the estimated parameters and the true value of these parameters. The aim of this paper is to obtain an affine estimator for the frequency of a complex sinusoid corrupted by white gaussian noise. Additionally, an adaptive technique is presented. The simulation results clearly show that affine estimators have better performance than unbiased estimators such as the maximum likelihood estimator (MLE) and the Fu-Kam approximation.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Single Tone Estimation
Affine Estimators
Mean Squared Error
Adaptive Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123804
Ver los metadatos del registro completo
id |
SEDICI_45fea059e55d8051c2ac98cdcb6eb16a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123804 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Application of Affine Estimators to Single Tone Frequency EstimationGama, FernandoCasaglia, DanielCernuschi-Frías, BrunoCiencias InformáticasSingle Tone EstimationAffine EstimatorsMean Squared ErrorAdaptive AlgorithmAffine estimation has emerged as a promising technique to reduce the mean squared error (MSE) between the estimated parameters and the true value of these parameters. The aim of this paper is to obtain an affine estimator for the frequency of a complex sinusoid corrupted by white gaussian noise. Additionally, an adaptive technique is presented. The simulation results clearly show that affine estimators have better performance than unbiased estimators such as the maximum likelihood estimator (MLE) and the Fu-Kam approximation.Sociedad Argentina de Informática e Investigación Operativa2012-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf121-131http://sedici.unlp.edu.ar/handle/10915/123804enginfo:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/11_AST_2012.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:39Zoai:sedici.unlp.edu.ar:10915/123804Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:39.662SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Application of Affine Estimators to Single Tone Frequency Estimation |
title |
Application of Affine Estimators to Single Tone Frequency Estimation |
spellingShingle |
Application of Affine Estimators to Single Tone Frequency Estimation Gama, Fernando Ciencias Informáticas Single Tone Estimation Affine Estimators Mean Squared Error Adaptive Algorithm |
title_short |
Application of Affine Estimators to Single Tone Frequency Estimation |
title_full |
Application of Affine Estimators to Single Tone Frequency Estimation |
title_fullStr |
Application of Affine Estimators to Single Tone Frequency Estimation |
title_full_unstemmed |
Application of Affine Estimators to Single Tone Frequency Estimation |
title_sort |
Application of Affine Estimators to Single Tone Frequency Estimation |
dc.creator.none.fl_str_mv |
Gama, Fernando Casaglia, Daniel Cernuschi-Frías, Bruno |
author |
Gama, Fernando |
author_facet |
Gama, Fernando Casaglia, Daniel Cernuschi-Frías, Bruno |
author_role |
author |
author2 |
Casaglia, Daniel Cernuschi-Frías, Bruno |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Single Tone Estimation Affine Estimators Mean Squared Error Adaptive Algorithm |
topic |
Ciencias Informáticas Single Tone Estimation Affine Estimators Mean Squared Error Adaptive Algorithm |
dc.description.none.fl_txt_mv |
Affine estimation has emerged as a promising technique to reduce the mean squared error (MSE) between the estimated parameters and the true value of these parameters. The aim of this paper is to obtain an affine estimator for the frequency of a complex sinusoid corrupted by white gaussian noise. Additionally, an adaptive technique is presented. The simulation results clearly show that affine estimators have better performance than unbiased estimators such as the maximum likelihood estimator (MLE) and the Fu-Kam approximation. Sociedad Argentina de Informática e Investigación Operativa |
description |
Affine estimation has emerged as a promising technique to reduce the mean squared error (MSE) between the estimated parameters and the true value of these parameters. The aim of this paper is to obtain an affine estimator for the frequency of a complex sinusoid corrupted by white gaussian noise. Additionally, an adaptive technique is presented. The simulation results clearly show that affine estimators have better performance than unbiased estimators such as the maximum likelihood estimator (MLE) and the Fu-Kam approximation. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123804 |
url |
http://sedici.unlp.edu.ar/handle/10915/123804 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://41jaiio.sadio.org.ar/sites/default/files/11_AST_2012.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 121-131 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616175868182528 |
score |
13.070432 |