Robust estimators of accelerated failure time regression with generalized log-gamma errors
- Autores
- Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.
Fil: Agostinelli, Claudio. University of Trento; Italia
Fil: Locatelli, Isabella. Lausanne University Hospital; Suiza
Fil: Marazzi, Alfio Natale. Lausanne University Hospital; Suiza. Nice Computing SA; Suiza
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Censored Data
Quantile Distance Estimates
Truncated Maximum Likelihood Estimators
Weighted Likelihood Estimators
Τ Estimators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/66008
Ver los metadatos del registro completo
id |
CONICETDig_74b340c3ec3aecaf83e193c87306c2ea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/66008 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Robust estimators of accelerated failure time regression with generalized log-gamma errorsAgostinelli, ClaudioLocatelli, IsabellaMarazzi, Alfio NataleYohai, Victor JaimeCensored DataQuantile Distance EstimatesTruncated Maximum Likelihood EstimatorsWeighted Likelihood EstimatorsΤ Estimatorshttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets.Fil: Agostinelli, Claudio. University of Trento; ItaliaFil: Locatelli, Isabella. Lausanne University Hospital; SuizaFil: Marazzi, Alfio Natale. Lausanne University Hospital; Suiza. Nice Computing SA; SuizaFil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaElsevier Science2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66008Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-1060167-9473CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2016.10.012info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:02Zoai:ri.conicet.gov.ar:11336/66008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:02.395CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
title |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
spellingShingle |
Robust estimators of accelerated failure time regression with generalized log-gamma errors Agostinelli, Claudio Censored Data Quantile Distance Estimates Truncated Maximum Likelihood Estimators Weighted Likelihood Estimators Τ Estimators |
title_short |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
title_full |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
title_fullStr |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
title_full_unstemmed |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
title_sort |
Robust estimators of accelerated failure time regression with generalized log-gamma errors |
dc.creator.none.fl_str_mv |
Agostinelli, Claudio Locatelli, Isabella Marazzi, Alfio Natale Yohai, Victor Jaime |
author |
Agostinelli, Claudio |
author_facet |
Agostinelli, Claudio Locatelli, Isabella Marazzi, Alfio Natale Yohai, Victor Jaime |
author_role |
author |
author2 |
Locatelli, Isabella Marazzi, Alfio Natale Yohai, Victor Jaime |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Censored Data Quantile Distance Estimates Truncated Maximum Likelihood Estimators Weighted Likelihood Estimators Τ Estimators |
topic |
Censored Data Quantile Distance Estimates Truncated Maximum Likelihood Estimators Weighted Likelihood Estimators Τ Estimators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets. Fil: Agostinelli, Claudio. University of Trento; Italia Fil: Locatelli, Isabella. Lausanne University Hospital; Suiza Fil: Marazzi, Alfio Natale. Lausanne University Hospital; Suiza. Nice Computing SA; Suiza Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
The generalized log-gamma (GLG) model is a very flexible family of distributions to analyze datasets in many different areas of science and technology. Estimators are proposed which are simultaneously highly robust and highly efficient for the parameters of a GLG distribution in the presence of censoring. Estimators with the same properties for accelerated failure time models with censored observations and error distribution belonging to the GLG family are also introduced. It is proven that the proposed estimators are asymptotically fully efficient and the maximum mean square error is examined using Monte Carlo simulations. The simulations confirm that the proposed estimators are highly robust and highly efficient for a finite sample size. Finally, the benefits of the proposed estimators in applications are illustrated with the help of two real datasets. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/66008 Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-106 0167-9473 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/66008 |
identifier_str_mv |
Agostinelli, Claudio; Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust estimators of accelerated failure time regression with generalized log-gamma errors; Elsevier Science; Computational Statistics and Data Analysis; 107; 3-2017; 92-106 0167-9473 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.csda.2016.10.012 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947316302390 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269197058441216 |
score |
13.13397 |